The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein

[1]  G. Lagna,et al.  Negative regulation of axis formation and Wnt signaling in Xenopus embryos by the F-box/WD40 protein βTrCP , 1999, Mechanisms of Development.

[2]  G. Núñez,et al.  WD-40 Repeat Region Regulates Apaf-1 Self-association and Procaspase-9 Activation* , 1998, The Journal of Biological Chemistry.

[3]  I. Korf,et al.  The Polycomb group in Caenorhabditis elegans and maternal control of germline development. , 1998, Development.

[4]  S. Srinivasula,et al.  Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. , 1998, Molecular cell.

[5]  N. Tommerup,et al.  Ciao 1 Is a Novel WD40 Protein That Interacts with the Tumor Suppressor Protein WT1* , 1998, The Journal of Biological Chemistry.

[6]  T. Hubbard,et al.  Using neural networks for prediction of the subcellular location of proteins. , 1998, Nucleic acids research.

[7]  Yuanming Hu,et al.  Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Ebbole,et al.  Tissue-specific repression of starvation and stress responses of the Neurospora crassa con-10 gene is mediated by RCO1. , 1998, Fungal genetics and biology : FG & B.

[9]  M. Carlson,et al.  Functional Relationships of Srb10-Srb11 Kinase, Carboxy-Terminal Domain Kinase CTDK-I, and Transcriptional Corepressor Ssn6-Tup1 , 1998, Molecular and Cellular Biology.

[10]  H. deSilva,et al.  Functional dissection of yeast Hir1p, a WD repeat-containing transcriptional corepressor. , 1998, Genetics.

[11]  W. Gruissem,et al.  A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. , 1997, The Plant cell.

[12]  J. Kelly,et al.  Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans. , 1997, Fungal genetics and biology : FG & B.

[13]  J. Kelly,et al.  Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans. , 1996, Canadian journal of microbiology.

[14]  D. Edmondson,et al.  Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. , 1996, Genes & development.

[15]  M. Noll,et al.  The Polycomb‐group gene, extra sex combs, encodes a nuclear member of the WD‐40 repeat family. , 1995, The EMBO journal.

[16]  B. Turcq,et al.  A gene responsible for vegetative incompatibility in the fungus Podospora anserina encodes a protein with a GTP-binding motif and G beta homologous domain. , 1995, Gene.

[17]  H. Hameister,et al.  Structural organization and developmental expression pattern of the mouse WD-repeat gene DMR-N9 immediately upstream of the myotonic dystrophy locus. , 1995, Human molecular genetics.

[18]  A. Kumar,et al.  The sulfur controller-2 negative regulatory gene of Neurospora crassa encodes a protein with beta-transducin repeats. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[20]  Raman Nambudripad,et al.  The ancient regulatory-protein family of WD-repeat proteins , 1994, Nature.

[21]  M. Williamson,et al.  The structure and function of proline-rich regions in proteins. , 1994, The Biochemical journal.

[22]  C. Amemiya,et al.  Structure and genomic sequence of the myotonic dystrophy (DM kinase) gene. , 1993, Human molecular genetics.

[23]  J. Kelly,et al.  Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon cataboiite repression in Aspergillus nidulans , 1993, Molecular microbiology.

[24]  H. Ploegh,et al.  The WD‐40 repeat , 1992, FEBS letters.

[25]  C. Amemiya,et al.  Characterization of the myotonic dystrophy region predicts multiple protein isoform–encoding mRNAs , 1992, Nature Genetics.

[26]  R. Trumbly Glucose repression in the yeast Saccharomyces cerevisiae , 1992, Molecular microbiology.

[27]  H. Ronne,et al.  Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. , 1991, The EMBO journal.

[28]  J. Kelly,et al.  Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans , 1991, Molecular and cellular biology.

[29]  A. Cuticchia,et al.  Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. , 1991, Nucleic acids research.

[30]  R. Trumbly,et al.  Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae , 1990, Molecular and cellular biology.

[31]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[32]  E. A. O'neill,et al.  The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain , 1989, Cell.

[33]  A. Andrianopoulos,et al.  Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans , 1988, Molecular and cellular biology.

[34]  M. Hynes Studies on the role of the areA gene in the regulation of nitrogen catabolism in Aspergillus nidulans. , 1975, Australian journal of biological sciences.

[35]  H. Arst,et al.  Carbon catabolite repression in Aspergillos nidulans. , 1975, European journal of biochemistry.

[36]  J. Sweigard,et al.  Improved Vectors for Selecting Resistance to Hygromycin , 1994 .

[37]  Steven B. Lee Isolation of DNA from fungal mycelia and single spores , 1990 .

[38]  C. Weil,et al.  Cloning of the riboB locus of Aspergillus nidulans. , 1987, Gene.

[39]  D. Cove The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. , 1966, Biochimica et biophysica acta.