GET: A generic electronics system for TPCs and nuclear physics instrumentation

Abstract General Electronics for TPCs (GET) is a generic, reconfigurable and comprehensive electronics and data-acquisition system for nuclear physics instrumentation of up to 33792 channels. The system consists of a custom-designed ASIC for signal processing, front-end cards that each house 4 ASIC chips and digitize the data in parallel through 12-bit ADCs, concentration boards to read and process the digital data from up to 16 ASICs, a 3-level trigger and master clock module to trigger the system and synchronize the data, as well as all of the associated firmware, communication and data-acquisition software. An overview of the system including its specifications and measured performances are presented.

G. Cardella | E. De Filippo | F. Druillole | E. Delagnes | T. Marchi | A. Trifirò | Wolfgang Mittig | A. Fritsch | Faisal T. Abu-Nimeh | Shebli Anvar | Yassid Ayyad | P. Hellmuth | J. L. Pedroza | P. Baron | J. Pancin | B. Blank | Daniel Bazin | J. Giovinazzo | Jiecheng Yang | H. De Witte | Riccardo Raabe | G. Wittwer | P. Russotto | F. Saillant | M. Blaizot | G. F. Grinyer | C. Belkhiria | B. Raine | P. Roussel-Chomaz | S. De Luca | E. V. Pagano | J. Pibernat | E. Delagnes | P. Baron | G. Saccâ | A. Trifirò | F. Druillole | S. Anvar | W. Mittig | Jiecheng Yang | J. Pancin | P. Sizun | D. Bazin | W. G. Lynch | T. Isobe | T. Marchi | S. Ceruti | N. Usher | L. Martina | P. Hellmuth | C. Huss | A. Rebii | B. Blank | P. Roussel-Chomaz | R. Raabe | J. Giovinazzo | M. Babo | G. Grinyer | T. Roger | L. Nalpas | A. Rebii | N. Usher | F. Abu-Nimeh | C. Huss | A. Laffoley | L. Nalpas | E. C. Pollacco | Tan Ahn | A. Arokiaraj | H. Baba | M. Babo | S. Beceiro-Novo | J. Bradt | L. Carpenter | S. Ceruti | B. Duclos | F. Favela | C. Gueye | T. Isobe | B. Lachacinski | A. T. Laffoley | G. Lebertre | L. Legeard | L. Martina | C. Maugeais | O. Poleshchuk | S. Primault | M. Renaud | T. Roger | G. Saccà | P. Sizun | D. Suzuki | J. A. Swartz | A. Tizon | G. Cardella | E. Filippo | E. Pagano | P. Russotto | Y. Ayyad | J. Bradt | H. Witte | D. Suzuki | B. Raine | F. Saillant | M. Renaud | S. Beceiro-Novo | J. Pedroza | E. Pollacco | T. Ahn | O. Poleshchuk | L. Legeard | C. Maugeais | F. Favela | B. Duclos | S. D. Luca | B. Lachacinski | A. Arokiaraj | J. Pibernat | G. Wittwer | A. Tizón | A. Fritsch | L. Carpenter | H. Baba | G. Lebertre | C. Belkhiria | M. Blaizot | C. Gueye | S. Primault | S. Luca

[1]  J. Ljungvall,et al.  AGATA - Advanced Gamma Tracking Array , 2011 .

[2]  Y. Blumenfeld,et al.  First measurement of the giant monopole and quadrupole resonances in a short-lived nucleus: 56Ni. , 2008, Physical review letters.

[3]  W. Mills,et al.  Measurement of the Two-Halo Neutron Transfer Reaction H1(Li11,Li9)H3 at 3AMeV , 2008, 0802.1778.

[4]  M. Chartier,et al.  MAYA: an Active-Target Detector for Binary Reactions with Exotic Beams , 2007 .

[5]  F. Sauli GEM: A new concept for electron amplification in gas detectors , 1997 .

[6]  Y. Blumenfeld,et al.  Measurement of the isoscalar monopole response in the neutron-rich nucleus 68Ni. , 2014, Physical review letters.

[7]  A. Fritsch,et al.  Prototype AT-TPC: Toward a new generation active target time projection chamber for radioactive beam experiments , 2012 .

[8]  T. Miyachi,et al.  MULTIPLE-SAMPLING AND TRACKING PROPORTIONAL CHAMBER FOR NUCLEAR REACTIONS WITH LOW-ENERGY RADIOACTIVE ISOTOPE BEAMS , 1999 .

[9]  F. Delalee,et al.  A time projection chamber for the three-dimensional reconstruction of two-proton radioactivity events , 2010 .

[10]  Isabel S. Gonçalves,et al.  Measurement of the n_TOF beam profile with a micromegas detector , 2004 .

[11]  Y. Watanabe,et al.  CNS active target (CAT) for missing mass spectroscopy with intense beams , 2015, Journal of Radioanalytical and Nuclear Chemistry.

[12]  G. Charpak,et al.  MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments , 1996 .

[13]  Stephan Aune,et al.  PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers , 2016, 1610.08883.

[14]  E. Galyaev,et al.  Resonant α scattering of 6 He: Limits of clustering in 10 Be , 2013 .

[15]  W. Mittig,et al.  One-dimensionality in atomic nuclei: A candidate for linear-chain α clustering in C 14 , 2016 .

[16]  B. Jurado,et al.  Resonance state in 7H. , 2007, Physical review letters.

[17]  Wolfgang Mittig,et al.  Active targets for the study of nuclei far from stability , 2015 .

[18]  K. Lee,et al.  Simulation of the time-projection chamber with triple GEMs for the LAMPS at RAON , 2016 .

[19]  E. Delagnes,et al.  GET electronics samples data analysis , 2016 .

[20]  E. Filippo,et al.  Experimental effects of dynamics and thermodynamics in nuclear reactions on the symmetry energy as seen by the CHIMERA 4$ \pi$ detector , 2013, 1310.5836.

[21]  T. Nakamura,et al.  Superconducting Dipole Magnet for SAMURAI Spectrometer , 2013, IEEE Transactions on Applied Superconductivity.

[22]  W. Mittig,et al.  The Prototype Active-Target Time-Projection Chamber used with TwinSol radioactive-ion beams , 2016 .

[23]  G. A. Korolev,et al.  Nuclear Matter Distributions in 6 He and 8 He from Small Angle p-He Scattering in Inverse Kinematics at Intermediate Energy , 1997 .

[24]  D. Calvet,et al.  AFTER, an ASIC for the Readout of the Large T2K Time Projection Chambers , 2008, IEEE Transactions on Nuclear Science.

[25]  F. Druillole,et al.  Tests of Micro-Pattern Gaseous Detectors for active target time projection chambers in nuclear physics , 2014 .

[26]  Xiaodong Tang,et al.  Active Target detectors for studies with exotic beams: Present and next future , 2015 .