B‐type natriuretic peptide attenuates cardiac hypertrophy via the transforming growth factor‐β1/smad7 pathway in vivo and in vitro

1. Previously, we showed that long‐term treatment of rats after myocardial infarction (MI) with B‐type natriuretic peptide (BNP) prevented ventricular remodelling. However, it is unclear whether long‐term BNP treatment affects cardiac hypertrophy and, if so, its mechanism of action. In the present study, we investigated the effects of long‐term BNP treatment on cardiac hypertrophy and the molecular mechanisms involved.

[1]  Zhongkai Wu,et al.  Effect of long-term B-type natriuretic peptide treatment on left ventricular remodeling and function after myocardial infarction in rats. , 2009, European journal of pharmacology.

[2]  K. Bailey,et al.  Chronic Actions of a Novel Oral B-Type Natriuretic Peptide Conjugate in Normal Dogs and Acute Actions in Angiotensin II–Mediated Hypertension , 2008, Circulation.

[3]  Z. Zuo,et al.  Fluvastatin decreases cardiac fibrosis possibly through regulation of TGF-beta(1)/Smad 7 expression in the spontaneously hypertensive rats. , 2008, European journal of pharmacology.

[4]  N. Frangogiannis,et al.  The role of TGF-β Signaling in Myocardial Infarction and Cardiac Remodeling , 2007 .

[5]  K. Fujiwara,et al.  ECM remodeling in hypertensive heart disease. , 2007, The Journal of clinical investigation.

[6]  H. Jing,et al.  Brain natriuretic peptide limits myocardial infarct size dependent of nitric oxide synthase in rats. , 2007, Clinica chimica acta; international journal of clinical chemistry.

[7]  J. Molkentin,et al.  Regulation of cardiac hypertrophy by intracellular signalling pathways , 2006, Nature Reviews Molecular Cell Biology.

[8]  N. Maeda,et al.  The role of natriuretic peptides in cardioprotection. , 2006, Cardiovascular research.

[9]  K. Nakao,et al.  Role of Natriuretic Peptide Receptor Guanylyl Cyclase-A in Myocardial Infarction Evaluated Using Genetically Engineered Mice , 2005, Hypertension.

[10]  Bernd Zetsche,et al.  Local Atrial Natriuretic Peptide Signaling Prevents Hypertensive Cardiac Hypertrophy in Endothelial Nitric-oxide Synthase-deficient Mice* , 2005, Journal of Biological Chemistry.

[11]  R. Woods CARDIOPROTECTIVE FUNCTIONS OF ATRIAL NATRIURETIC PEPTIDE AND B‐TYPE NATRIURETIC PEPTIDE: A BRIEF REVIEW , 2004, Clinical and experimental pharmacology & physiology.

[12]  S. Rosenkranz TGF-β1 and angiotensin networking in cardiac remodeling , 2004 .

[13]  G. Schreiner,et al.  B-Type Natriuretic Peptide Exerts Broad Functional Opposition to Transforming Growth Factor-&bgr; in Primary Human Cardiac Fibroblasts: Fibrosis, Myofibroblast Conversion, Proliferation, and Inflammation , 2004, Circulation research.

[14]  D. Gardner Natriuretic peptides: markers or modulators of cardiac hypertrophy? , 2003, Trends in Endocrinology & Metabolism.

[15]  J. Burnett,et al.  Brain Natriuretic Peptide Is Produced in Cardiac Fibroblasts and Induces Matrix Metalloproteinases , 2002, Circulation research.

[16]  R. Schwartz,et al.  Hop Is an Unusual Homeobox Gene that Modulates Cardiac Development , 2002, Cell.

[17]  S. Rosenkranz,et al.  Alterations of β-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-β1 , 2002 .

[18]  AkiraTakeshita,et al.  Transforming Growth Factor-β Function Blocking Prevents Myocardial Fibrosis and Diastolic Dysfunction in Pressure-Overloaded Rats , 2002 .

[19]  Stephen C. Jones,et al.  Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. , 2002, American journal of physiology. Heart and circulatory physiology.

[20]  Michael D. Schneider,et al.  Serial killer: angiotensin drives cardiac hypertrophy via TGF-β1 , 2002 .

[21]  T. Doetschman,et al.  TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II , 2002 .

[22]  D. Garbers,et al.  A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Redfield,et al.  Subcutaneous administration of brain natriuretic peptide in experimental heart failure. , 2000, Journal of the American College of Cardiology.

[24]  Kenji Nakamura,et al.  Cardiac fibrosis in mice lacking brain natriuretic peptide. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  I. Dixon,et al.  Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. , 1999, Journal of molecular and cellular cardiology.

[26]  A. Clerk,et al.  Cellular mechanisms of cardiac hypertrophy , 1998, Journal of Molecular Medicine.

[27]  W. Williams,et al.  Overexpression of transforming growth factor-beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. , 1997, Circulation.

[28]  L. Miller,et al.  Hemodynamic effects of a single intravenous injection of synthetic human brain natriuretic peptide in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. , 1996, The American journal of cardiology.

[29]  K. Nakao,et al.  Increased Plasma Levels of Brain Natriuretic Peptide in Patients With Acute Myocardial Infarction , 1993, Circulation.

[30]  J. Burnett,et al.  Oral brain natriuretic peptide: a novel strategy for chronic protein therapy for cardiovascular disease. , 2007, Trends in cardiovascular medicine.

[31]  N. Frangogiannis,et al.  The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. , 2007, Cardiovascular research.

[32]  J. Heger,et al.  www.elsevier.com/locate/cardiores Review The complex pattern of SMAD signaling in the cardiovascular system B , 2005 .

[33]  R. Derynck,et al.  Smad-dependent and Smad-independent pathways in TGF-beta family signalling. , 2003, Nature.

[34]  S. Rosenkranz,et al.  Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). , 2002, American journal of physiology. Heart and circulatory physiology.

[35]  T. Horio,et al.  Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. , 2000, Hypertension.

[36]  B. Swynghedauw,et al.  Molecular mechanisms of myocardial remodeling. , 1999, Physiological reviews.

[37]  Transforming Growth Factor- (cid:1) Function Blocking Prevents Myocardial Fibrosis and Diastolic Dysfunction in Pressure-Overloaded Rats , 2022 .