The external globus pallidus: progress and perspectives

The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.

[1]  M. Kelland,et al.  In vivo characterization of two cell types in the rat globus pallidus which have opposite responses to dopamine receptor stimulation: Comparison of electrophysiological properties and responses to apomorphine, dizocilpine, and ketamine anesthesia , 1995, Synapse.

[2]  C. Kellendonk,et al.  Balancing the basal ganglia circuitry: A possible new role for dopamine D2 receptors in health and disease , 2015, Movement disorders : official journal of the Movement Disorder Society.

[3]  P. Molinoff,et al.  Ontogeny of dopamine D1 and D2 receptor subtypes in rat basal ganglia: a quantitative autoradiographic study. , 1991, Brain research. Developmental brain research.

[4]  Martin Lévesque,et al.  Extrastriatal dopaminergic innervation of human basal ganglia , 1999, Neuroscience Research.

[5]  Clifford B. Saper,et al.  Projections of the pedunculopontine tegmental nucleus in the rat: evidence for additional extrapyramidal circuitry , 1982, Brain Research.

[6]  Kaye Zolpidem improves akinesia , dystonia and dyskinesia in advanced Parkinson ’ s disease , 2008 .

[7]  F. Windels,et al.  Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat , 2000, The European journal of neuroscience.

[8]  M. Deschenes,et al.  A Single‐cell Study of the Axonal Projections Arising from the Posterior Intralaminar Thalamic Nuclei in the Rat , 1996, The European journal of neuroscience.

[9]  S. A. Wilson PROGRESSIVE LENTICULAR DEGENERATION : A FAMILIAL NERVOUS DISEASE ASSOCIATED WITH CIRRHOSIS OF THE LIVER. , 1912 .

[10]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[11]  H. Bergman,et al.  Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease , 2010, Nature Reviews Neuroscience.

[12]  A. Dolphin,et al.  Inhibition of calcium currents in cultured rat dorsal root ganglion neurones by (−)‐baclofen , 1986, British journal of pharmacology.

[13]  L. Heimer,et al.  Efferent connections of the caudal part of the globus pallidus in the rat , 1996, The Journal of comparative neurology.

[14]  D James Surmeier,et al.  Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? , 2005, Current Opinion in Neurobiology.

[15]  Xin Jin,et al.  Basal Ganglia Subcircuits Distinctively Encode the Parsing and Concatenation of Action Sequences , 2014, Nature Neuroscience.

[16]  A. Parent,et al.  Evidence for a distinct nigropallidal dopaminergic projection in the squirrel monkey , 1989, Brain Research.

[17]  Pavel Osten,et al.  HCN Channelopathy in External Globus Pallidus Neurons in Models of Parkinson’s Disease , 2010, Nature Neuroscience.

[18]  Y. Smith,et al.  The thalamostriatal system: a highly specific network of the basal ganglia circuitry , 2004, Trends in Neurosciences.

[19]  J. Tepper,et al.  Gabaergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata , 1999, Neuroscience.

[20]  Yan Ao,et al.  Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice , 2014, Nature Neuroscience.

[21]  M. Kimura,et al.  Physiological properties of projection neurons in the monkey striatum to the globus pallidus , 2004, Experimental Brain Research.

[22]  F. Luo,et al.  Neural responses in multiple basal ganglia regions during spontaneous and treadmill locomotion tasks in rats , 2004, Experimental Brain Research.

[23]  Elena Cattaneo,et al.  Molecular mechanisms and potential therapeutical targets in Huntington's disease. , 2010, Physiological reviews.

[24]  Matthew E. Larkum,et al.  The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons , 2006, Neuron.

[25]  L. Defebvre,et al.  External Globus Pallidus Stimulation Modulates Brain Connectivity in Huntington's Disease , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  R. Nicoll,et al.  Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells , 1984, Nature.

[27]  M. Delong,et al.  Putamen: Activity of Single Units during Slow and Rapid Arm Movements , 1973, Science.

[28]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  S. Haber,et al.  Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study , 1990, Brain Research.

[30]  Shlomo Elias,et al.  Statistical Properties of Pauses of the High-Frequency Discharge Neurons in the External Segment of the Globus Pallidus , 2007, The Journal of Neuroscience.

[31]  Daniel K. Leventhal,et al.  Canceling actions involves a race between basal ganglia pathways , 2013, Nature Neuroscience.

[32]  M. Savasta,et al.  Autoradiographic distribution of the D1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors , 1986, Neuroscience.

[33]  N. Belluardo,et al.  Expression of Cx36 in mammalian neurons , 2000, Brain Research Reviews.

[34]  F. Bloom,et al.  Distribution of neurons expressing immunoreactivity for the 5HT3 receptor subtype in the rat brain and spinal cord , 1998, The Journal of comparative neurology.

[35]  S. A. Wilson AN EXPERIMENTAL RESEARCH INTO THE ANATOMY AND PHYSIOLOGY OF THE CORPUS STRIATUM , 1914 .

[36]  K. Willecke,et al.  Differential expression of three gap junction proteins in developing and mature brain tissues. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Kita,et al.  Parvalbumin-immunopositive neurons in rat globus pallidus: a light and electron microscopic study , 1994, Brain Research.

[38]  A. Parent,et al.  Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry , 1995, Brain Research Reviews.

[39]  Hitoshi Kita,et al.  Subthalamo‐pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia , 2011, The European journal of neuroscience.

[40]  A. Parent,et al.  Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus) , 1986, Neuroscience.

[41]  Charles J. Wilson,et al.  Active decorrelation in the basal ganglia , 2013, Neuroscience.

[42]  Paul J. Harrison,et al.  Messenger RNA encoding the D2 dopaminergic receptor detected by in situ hybridization histochemistry in rat brain , 1989, FEBS letters.

[43]  R. Shigemoto,et al.  Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: A light and electron microscopic study , 1998, The Journal of comparative neurology.

[44]  Robert W. Williams,et al.  Complex trait analysis of the mouse striatum: independent QTLs modulate volume and neuron number , 2001, BMC Neuroscience.

[45]  A. Parent,et al.  Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA‐L anterograde tracing method , 1990, The Journal of comparative neurology.

[46]  Philip A. Starr,et al.  Pallidal neuronal discharge in Huntington's disease: Support for selective loss of striatal cells originating the indirect pathway , 2008, Experimental Neurology.

[47]  J. Schipper,et al.  Species differences in the distribution of central 5-HT1 binding sites: a comparative autoradiographic study between rat and guinea pig , 1991, Brain Research.

[48]  Á. Pazos,et al.  Autoradiographic distribution of 5‐HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species , 2004, British journal of pharmacology.

[49]  H. Bergman,et al.  Neurons in both pallidal segments change their firing properties similarly prior to closure of the eyes. , 2010, Journal of neurophysiology.

[50]  R. Seite,et al.  Study of the rat neostriatum using a combined Golgi-electron microscope technique and serial sections , 1980, Neuroscience.

[51]  J. Golowasch,et al.  Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology , 2012, Front. Behav. Neurosci..

[52]  Bruno Giros,et al.  Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA , 1991, Brain Research.

[53]  J. Schneider,et al.  Alterations in pallidal neuronal responses to peripheral sensory and striatal stimulation in symptomatic and recovered Parkinsonian cats , 1995, Brain Research.

[54]  S. Haber,et al.  Immunocytochemical localization of the dopamine transporter in human brain , 1999, The Journal of comparative neurology.

[55]  P. Somogyi,et al.  Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS , 2002, Neuroscience.

[56]  I. Stanford,et al.  Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro. , 2001, Neuropharmacology.

[57]  J. Palacios,et al.  Serotoninergic terminal transporters are differentially affected in Parkinson's disease and progressive supranuclear palsy: An autoradiographic study with [3H]citalopram , 1993, Neuroscience.

[58]  Kenji F. Tanaka,et al.  Functional Connectome of the Striatal Medium Spiny Neuron , 2011, The Journal of Neuroscience.

[59]  G. Arbuthnott,et al.  Electrophysiological and anatomical observations concerning the pallidostriatal pathway in the rat , 2004, Experimental Brain Research.

[60]  I. Stanford,et al.  Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro , 2000, The Journal of physiology.

[61]  S. Johnson,et al.  Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro , 2000, The Journal of physiology.

[62]  J. Neumaier,et al.  Localization of 5-HT7 receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression , 2001, Journal of Chemical Neuroanatomy.

[63]  J. Sergeant,et al.  Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD , 1998, Behavioural Brain Research.

[64]  M. Delong,et al.  Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease. , 2015, JAMA neurology.

[65]  M. Merello,et al.  [Functional anatomy of the basal ganglia]. , 2000, Revista de neurologia.

[66]  L. Tremblay,et al.  Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism , 1991, Brain Research.

[67]  J. Bolam,et al.  Selective Innervation of Neostriatal Interneurons by a Subclass of Neuron in the Globus Pallidus of the Rat , 1998, The Journal of Neuroscience.

[68]  A. Priori,et al.  Cerebellar and Motor Cortical Transcranial Stimulation Decrease Levodopa-Induced Dyskinesias in Parkinson’s Disease , 2015, The Cerebellum.

[69]  G. Dawson,et al.  Evidence for a Significant Role of α3-Containing GABAA Receptors in Mediating the Anxiolytic Effects of Benzodiazepines , 2005, The Journal of Neuroscience.

[70]  C. Petersen,et al.  Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior , 2015, Neuron.

[71]  R. Marotta,et al.  Motor Cortex Stimulation in Parkinson's Disease , 2012, Neurology research international.

[72]  C. Marsden,et al.  Regional distribution of monoamines in the corpus striatum of the rat. , 1972, Brain research.

[73]  J. Rafols,et al.  The primate globus pallidus: a Golgi and electron microscopic study. , 1974, Journal fur Hirnforschung.

[74]  Joshua L. Plotkin,et al.  Corticostriatal synaptic adaptations in Huntington’s disease , 2015, Current Opinion in Neurobiology.

[75]  G. Silberberg,et al.  A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei , 2014, Neuron.

[76]  H. Kita,et al.  Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation , 1991, Brain Research.

[77]  W. Yung,et al.  5-HT excites globus pallidus neurons by multiple receptor mechanisms , 2008, Neuroscience.

[78]  Cortically evoked responses of human pallidal neurons recorded during stereotactic neurosurgery , 2011 .

[79]  E. Vaadia,et al.  Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates , 1998, Trends in Neurosciences.

[80]  J. Tepper,et al.  Heterogeneity and Diversity of Striatal GABAergic Interneurons , 2010, Front. Neuroanat..

[81]  Christian Lüscher,et al.  G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons , 1997, Neuron.

[82]  G. Perea,et al.  Tripartite synapses: astrocytes process and control synaptic information , 2009, Trends in Neurosciences.

[83]  D. Sibley,et al.  Cellular distribution of the rat D4 dopamine receptor protein in the CNS using anti-receptor antisera , 1997, Brain Research.

[84]  B. Bean,et al.  GABAB Receptor Inhibition of P-type Ca2+ Channels in Central Neurons , 1993, Neuron.

[85]  Allan R. Jones,et al.  A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing , 2012, Nature Neuroscience.

[86]  A. Nambu,et al.  Cortically Evoked Long-Lasting Inhibition of Pallidal Neurons in a Transgenic Mouse Model of Dystonia , 2008, The Journal of Neuroscience.

[87]  D. Grigoriadis,et al.  [3H]quinpirole binding to putative D2 and D3 dopamine receptors in rat brain and pituitary gland: a quantitative autoradiographic study. , 1993, The Journal of pharmacology and experimental therapeutics.

[88]  L. Tremblay,et al.  Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. , 2004, Brain : a journal of neurology.

[89]  T. Morera-Herreras,et al.  Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease , 2014, Front. Neural Circuits.

[90]  H. Akil,et al.  A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques , 1991, Neuroscience.

[91]  Martin Lévesque,et al.  The axonal arborization of single nigrostriatal neurons in rats , 1999, Brain Research.

[92]  S. Dymecki,et al.  Projections and interconnections of genetically defined serotonin neurons in mice , 2012, The European journal of neuroscience.

[93]  H. Kita,et al.  Monkey globus pallidus external segment neurons projecting to the neostriatum. , 1999, Neuroreport.

[94]  W. Vogel,et al.  Activities of enzymes involved in the formation and destruction of biogenic amines in various areas of human brain. , 1969, The Journal of pharmacology and experimental therapeutics.

[95]  Erwan Bezard,et al.  Phenotype of Striatofugal Medium Spiny Neurons in Parkinsonian and Dyskinetic Nonhuman Primates: A Call for a Reappraisal of the Functional Organization of the Basal Ganglia , 2006, The Journal of Neuroscience.

[96]  D. Plenz,et al.  A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus , 1999, Nature.

[97]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations , 1984, The Journal of comparative neurology.

[98]  M. Gelabert-González,et al.  [Deep brain stimulation in Parkinson's disease]. , 2013, Revista de neurologia.

[99]  B. Pakkenberg,et al.  Changes in total cell numbers of the basal ganglia in patients with multiple system atrophy — A stereological study , 2015, Neurobiology of Disease.

[100]  P. Blanchet,et al.  Opposite rotation induced by dopamine agonists in rats with unilateral lesions of the globus pallidus or substantia nigra Research report , 1998, Behavioural Brain Research.

[101]  A. Oliviero,et al.  Dopamine Dependency of Oscillations between Subthalamic Nucleus and Pallidum in Parkinson's Disease , 2001, The Journal of Neuroscience.

[102]  Philip J. Hahn,et al.  Network perspectives on the mechanisms of deep brain stimulation , 2010, Neurobiology of Disease.

[103]  M. Parent,et al.  Morphological evidence for dopamine interactions with pallidal neurons in primates , 2015, Front. Neuroanat..

[104]  Thomas Wichmann,et al.  Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. , 2006, Journal of neurophysiology.

[105]  U. Rudolph,et al.  GABA-based therapeutic approaches: GABAA receptor subtype functions. , 2006, Current opinion in pharmacology.

[106]  R. Vertes A PHA‐L analysis of ascending projections of the dorsal raphe nucleus in the rat , 1991, The Journal of comparative neurology.

[107]  J. H. Carlson,et al.  Stimulation of both D1 and D2 dopamine receptors appears necessary for full expression of postsynaptic effects of dopamine agonists: a neurophysiological study , 1987, Brain Research.

[108]  E. Rosengren,et al.  Detection of 5-S-cysteinyldopamine in human brain , 2005, Journal of Neural Transmission.

[109]  Charles J. Wilson,et al.  Move to the rhythm: oscillations in the subthalamic nucleus–external globus pallidus network , 2002, Trends in Neurosciences.

[110]  Charles J. Wilson,et al.  Activity Patterns in a Model for the Subthalamopallidal Network of the Basal Ganglia , 2002, The Journal of Neuroscience.

[111]  T. Sharp,et al.  Functional Mapping of Dorsal and Median Raphe 5‐Hydroxytryptamine Pathways in Forebrain of the Rat Using Microdialysis , 1997, Journal of neurochemistry.

[112]  J. Fritschy,et al.  GABAA‐receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits , 1995, The Journal of comparative neurology.

[113]  Danny C. W. Chan,et al.  Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex , 2012, Neuron.

[114]  P. Groves A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement , 1983, Brain Research Reviews.

[115]  M. Anderson,et al.  A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta , 2004, Experimental Brain Research.

[116]  A. Levey,et al.  D 1 and D 2 dopamine receptor mRNA in rat brain ( striatum / substantia nigra / amygdala / septum / in situ hybridization ) , 2022 .

[117]  P. Demoly,et al.  [Transgenic mice]. , 1992, Annales de dermatologie et de venereologie.

[118]  N. Severs,et al.  CONNEXIN EXPRESSION IN HUNTINGTON'S DISEASED HUMAN BRAIN , 1998, Cell biology international.

[119]  Suzanne N Haber,et al.  Dopamine Replacement Therapy Does Not Restore the Full Spectrum of Normal Pallidal Activity in the 1-Methyl-4-Phenyl-1,2,3,6-Tetra-Hydropyridine Primate Model of Parkinsonism , 2006, The Journal of Neuroscience.

[120]  Maxime Levesque,et al.  Motor sequence learning in primate: Role of the D2 receptor in movement chunking during consolidation , 2009, Behavioural Brain Research.

[121]  Shigetada Nakanishi,et al.  Metabotropic glutamate receptors: Synaptic transmission, modulation, and plasticity , 1994, Neuron.

[122]  O. Hornykiewicz Dopamine (3-hydroxytyramine) and brain function. , 1966, Pharmacological reviews.

[123]  Maxime J Parent,et al.  Movement chunking during sequence learning is a dopamine-dependant process: a study conducted in Parkinson’s disease , 2010, Experimental Brain Research.

[124]  Tzong-Shiue Yu,et al.  Changes in the Gene Expression of GABAA Receptor α1 and α2 Subunits and Metabotropic Glutamate Receptor 5 in the Basal Ganglia of the Rats with Unilateral 6-Hydroxydopamine Lesion and Embryonic Mesencephalic Grafts , 2001, Experimental Neurology.

[125]  G. Lur,et al.  Glutamate Receptor Modulation Is Restricted to Synaptic Microdomains. , 2015, Cell reports.

[126]  M. Sambrook,et al.  Experimental hemichorea/hemiballismus in the monkey. Studies on the intracerebral site of action in a drug-induced dyskinesia. , 1984, Brain : a journal of neurology.

[127]  J. Penney,et al.  Expression of N‐Methyl‐D‐Aspartate receptor subunit mRNAs in the human brain: Striatum and globus pallidus , 1998, The Journal of comparative neurology.

[128]  Coinciding Decreases in Discharge Rate Suggest That Spontaneous Pauses in Firing of External Pallidum Neurons Are Network Driven , 2015, The Journal of Neuroscience.

[129]  R. Kaji,et al.  [Diagnosis and treatment of dystonia]. , 2008, Rinsho shinkeigaku = Clinical neurology.

[130]  M. D. Crutcher,et al.  Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[131]  A. Parent,et al.  Dopaminergic innervation of human basal ganglia , 2000, Journal of Chemical Neuroanatomy.

[132]  R. Duvoisin,et al.  The metabotropic glutamate receptors: Structure and functions , 1995, Neuropharmacology.

[133]  Matthew D. Johnson,et al.  Neural targets for relieving parkinsonian rigidity and bradykinesia with pallidal deep brain stimulation. , 2012, Journal of neurophysiology.

[134]  A. Graybiel,et al.  Output architecture of the primate putamen , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[135]  D. Pinault,et al.  Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates , 1995, Brain Research.

[136]  J. Penney,et al.  The globus pallidus receives a projection from the parafascicular nucleus in the rat , 1991, Brain Research.

[137]  E. Richfield,et al.  Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system , 1989, Neuroscience.

[138]  C. Tsai,et al.  Zolpidem improves neuropsychiatric symptoms and motor dysfunction in a patient with Parkinson's disease after deep brain stimulation. , 2012, Acta neurologica Taiwanica.

[139]  A. Parent,et al.  The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[140]  J. Tepper,et al.  GABAergic Afferents Activate Both GABAA and GABAB Receptors in Mouse Substantia Nigra Dopaminergic Neurons In Vivo , 2008, The Journal of Neuroscience.

[141]  J. Paysan,et al.  Heterogeneity of GABAA-receptors: cell-specific expression, pharmacology, and regulation , 1995, Neurochemical Research.

[142]  A. Parent,et al.  Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry , 1989, The Journal of comparative neurology.

[143]  Y. Smith,et al.  Neuronal circuitry and synaptic connectivity of the basal ganglia. , 1998, Neurosurgery clinics of North America.

[144]  J. Tepper,et al.  Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo , 1999, Neuroscience.

[145]  D. A. Brown,et al.  GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[146]  R. Shigemoto,et al.  GABAB-receptor subtypes assemble into functional heteromeric complexes , 1998, Nature.

[147]  A. Charara,et al.  Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: An electron microscopic immunogold analysis in monkeys , 2005, Neuroscience.

[148]  D. Wright,et al.  Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain , 1995, The Journal of comparative neurology.

[149]  Anatol C. Kreitzer,et al.  Physiology and pharmacology of striatal neurons. , 2009, Annual review of neuroscience.

[150]  A. Nambu A new dynamic model of the cortico-basal ganglia loop. , 2004, Progress in brain research.

[151]  A. Björklund,et al.  Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway , 1979, Brain Research.

[152]  W. Dauer,et al.  Primary dystonia: molecules and mechanisms , 2009, Nature Reviews Neurology.

[153]  M. Mesulam,et al.  Cortical projections arising from the basal forebrain: A study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase , 1984, Neuroscience.

[154]  Alice Nieuwboer,et al.  Transcranial direct current stimulation in Parkinson's disease: Neurophysiological mechanisms and behavioral effects , 2015, Neuroscience & Biobehavioral Reviews.

[155]  A. Parent,et al.  The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat , 2000, Neuroscience Research.

[156]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[157]  I. Bar-Gad,et al.  Continuous Modulation of Action Potential Firing by a Unitary GABAergic Connection in the Globus Pallidus In Vitro , 2013, The Journal of Neuroscience.

[158]  Matthew D. Johnson,et al.  Mechanisms and targets of deep brain stimulation in movement disorders , 2008, Neurotherapeutics.

[159]  Hitoshi Kita,et al.  Role of Striatum in the Pause and Burst Generation in the Globus Pallidus of 6-OHDA-Treated Rats , 2011, Front. Syst. Neurosci..

[160]  P. Lavallée,et al.  Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. , 2000, The Journal of comparative neurology.

[161]  J. Palacios,et al.  Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry. , 1996, Brain research. Molecular brain research.

[162]  C. Pfister,et al.  [The cytoarchitecture of the rat globus pallidus]. , 1981, Journal fur Hirnforschung.

[163]  A. Nieoullon,et al.  Regional distribution and ontogeny of 5-HT4 binding sites in rodent brain , 1994, Neuropharmacology.

[164]  Eric H Kim,et al.  The Neuropathology of Huntington's Disease. , 2015, Current topics in behavioral neurosciences.

[165]  M. Delong,et al.  Deep-Brain Stimulation for Basal Ganglia Disorders. , 2011, Basal ganglia.

[166]  M. Delong,et al.  Activity of pallidal neurons during movement. , 1971, Journal of neurophysiology.

[167]  Shlomo Elias,et al.  Complex Locking Rather Than Complete Cessation of Neuronal Activity in the Globus Pallidus of a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Treated Primate in Response to Pallidal Microstimulation , 2004, The Journal of Neuroscience.

[168]  M. Ragozzino,et al.  The Parafascicular Thalamic Nucleus Concomitantly Influences Behavioral Flexibility and Dorsomedial Striatal Acetylcholine Output in Rats , 2010, The Journal of Neuroscience.

[169]  Y. Smith,et al.  Distinct Functional Roles of the Metabotropic Glutamate Receptors 1 and 5 in the Rat Globus Pallidus , 2003, The Journal of Neuroscience.

[170]  M. Desmurget,et al.  Basal ganglia contributions to motor control: a vigorous tutor , 2010, Current Opinion in Neurobiology.

[171]  Jérôme Baufreton,et al.  Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. , 2009, Journal of neurophysiology.

[172]  J. Lanciego,et al.  Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats , 2015, Front. Syst. Neurosci..

[173]  H. Bergman,et al.  The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. , 1994, Journal of neurophysiology.

[174]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[175]  A. Graybiel Habits, rituals, and the evaluative brain. , 2008, Annual review of neuroscience.

[176]  Mark Farrant,et al.  NMDA receptor subunits: diversity, development and disease , 2001, Current Opinion in Neurobiology.

[177]  T. Kita,et al.  Number, origins, and chemical types of rat pallidostriatal projection neurons , 2001, The Journal of comparative neurology.

[178]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[179]  R. Costa A selectionist account of de novo action learning , 2011, Current Opinion in Neurobiology.

[180]  P. Emson,et al.  Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: Immunohistochemical colocalization of the α1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits , 2004, The Journal of comparative neurology.

[181]  H. Bergman,et al.  Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. , 1995, Journal of neurophysiology.

[182]  V. Bigl,et al.  Regional and cellular expression sites of theα1 subunit of GABAA receptors in the rat basal forebrain: a cytochemical study with glutamic acid decarboxylase, choline acetyltransferase, calcium-binding proteins and nitric oxide synthase as second markers , 1995, Brain Research.

[183]  M. Delong,et al.  Deep Brain Stimulation for Neurologic and Neuropsychiatric Disorders , 2006, Neuron.

[184]  Chantal François,et al.  Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. , 2004, Brain : a journal of neurology.

[185]  A. Reiner,et al.  Genetics and neuropathology of Huntington's disease. , 2011, International review of neurobiology.

[186]  K. Neve,et al.  Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain. , 1991, The Journal of pharmacology and experimental therapeutics.

[187]  Y. Smith,et al.  Topographical and Synaptic Organization of the GABA‐Containing Pallidosubthalamic Projection in the Rat , 1990, The European journal of neuroscience.

[188]  T. Klockgether,et al.  Functional characterization and expression of thalamic GABAB receptors in a rodent model of Parkinson’s disease , 1999, Neuropharmacology.

[189]  F. Chollet,et al.  Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. , 2000, Brain : a journal of neurology.

[190]  R. Martínez-Murillo,et al.  Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons , 1998, Journal of Chemical Neuroanatomy.

[191]  J. Tepper,et al.  Pallidal control of substantia nigra dopaminergic neuron firing pattern and its relation to extracellular neostriatal dopamine levels , 2004, Neuroscience.

[192]  E. Richfield,et al.  Comparative distribution of dopamine D‐1 and D‐2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys , 1987, The Journal of comparative neurology.

[193]  J. Atack,et al.  The 5HT1B receptor agonist, CP‐93129, inhibits [3H]‐GABA release from rat globus pallidus slices and reverses akinesia following intrapallidal injection in the reserpine‐treated rat , 2000, British journal of pharmacology.

[194]  A. Scimemi Structure, function, and plasticity of GABA transporters , 2014, Front. Cell. Neurosci..

[195]  R. Gaykema,et al.  Direct catecholaminergic‐cholinergic interactions in the basal forebrain. II. Substantia nigra‐ventral tegmental area projections to cholinergic neurons , 1996, The Journal of comparative neurology.

[196]  B. Costall,et al.  On the involvement of the caudate-putamen, globus pallidus and substantia nigra with neuroleptic and cholinergic modification of locomotor activity. , 1972, Neuropharmacology.

[197]  K. Sakimura,et al.  Molecular diversity of the NMDA receptor channel , 1992, Nature.

[198]  T. Chase,et al.  D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. , 1987, Science.

[199]  George R. Marshall,et al.  Afferents to the rat substantia nigra studied with horseradish peroxidase, with special reference to fibres from the subthalamic nucleus , 1976, Brain Research.

[200]  M. Amalric,et al.  Targeting Group III Metabotropic Glutamate Receptors Produces Complex Behavioral Effects in Rodent Models of Parkinson's Disease , 2007, The Journal of Neuroscience.

[201]  A. Nambu Somatotopic Organization of the Primate Basal Ganglia , 2011, Front. Neuroanat..

[202]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[203]  O. Hassani,et al.  Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus , 1996, Neuroscience.

[204]  A. Galván,et al.  Intrapallidal dopamine restores motor deficits induced by 6-hydroxydopamine in the rat , 2009, Journal of Neural Transmission.

[205]  R. Dingledine,et al.  Glutamate Receptor Ion Channels: Structure, Regulation, and Function , 2010, Pharmacological Reviews.

[206]  F. Horak,et al.  Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. , 2011, Archives of neurology.

[207]  J. Rubenstein,et al.  The Progenitor Zone of the Ventral Medial Ganglionic Eminence Requires Nkx2-1 to Generate Most of the Globus Pallidus But Few Neocortical Interneurons , 2010, The Journal of Neuroscience.

[208]  A. Gittis,et al.  Transgenic Mouse Lines Subdivide External Segment of the Globus Pallidus (GPe) Neurons and Reveal Distinct GPe Output Pathways , 2014, The Journal of Neuroscience.

[209]  A. Charara,et al.  Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey , 1994, Brain Research.

[210]  O. Hobert,et al.  Maintenance of postmitotic neuronal cell identity , 2014, Nature Neuroscience.

[211]  A. Morel,et al.  Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients , 2000, Neuroscience.

[212]  H. Kita Globus pallidus external segment. , 2007, Progress in brain research.

[213]  R. Mckernan,et al.  Which GABAA-receptor subtypes really occur in the brain? , 1996, Trends in Neurosciences.

[214]  W. Regehr,et al.  The Substantia Nigra Conveys Target-Dependent Excitatory and Inhibitory Outputs from the Basal Ganglia to the Thalamus , 2014, The Journal of Neuroscience.

[215]  C. S. Chan,et al.  Electrophysiological and behavioral effects of zolpidem in rat globus pallidus , 2004, Experimental Neurology.

[216]  H. Fibiger,et al.  Collateral projections of neurons of the rat globus pallidus to the striatum and substantia nigra , 2004, Experimental Brain Research.

[217]  A. Parent,et al.  Pedunculopontine nucleus in the squirrel monkey: Projections to the basal ganglia as revealed by anterograde tract‐tracing methods , 1994, The Journal of comparative neurology.

[218]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[219]  T. Kita,et al.  Repetitive activation of glutamatergic inputs evokes a long-lasting excitation in rat globus pallidus neurons in vitro. , 2007, Journal of neurophysiology.

[220]  Charles J. Wilson GABAergic inhibition in the neostriatum. , 2007, Progress in brain research.

[221]  D. Surmeier,et al.  Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons , 2008, The Journal of Neuroscience.

[222]  Y. Sari Serotonin1B receptors: from protein to physiological function and behavior , 2004, Neuroscience & Biobehavioral Reviews.

[223]  J. Bolam,et al.  Differential localization of GABAA receptor subunits in relation to rat striatopallidal and pallidopallidal synapses , 2011, The European journal of neuroscience.

[224]  A. Björklund,et al.  Long-Term rAAV-Mediated Gene Transfer of GDNF in the Rat Parkinson's Model: Intrastriatal But Not Intranigral Transduction Promotes Functional Regeneration in the Lesioned Nigrostriatal System , 2000, The Journal of Neuroscience.

[225]  T. Wichmann,et al.  Localization and pharmacological modulation of GABA-B receptors in the globus pallidus of parkinsonian monkeys , 2011, Experimental Neurology.

[226]  Thomas Wichmann,et al.  Role of External Pallidal Segment in Primate Parkinsonism: Comparison of the Effects of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism and Lesions of the External Pallidal Segment , 2004, The Journal of Neuroscience.

[227]  J. Pin,et al.  Pharmacology and functions of metabotropic glutamate receptors. , 1997, Annual review of pharmacology and toxicology.

[228]  T. Chase,et al.  The D1 dopamine receptor in the rat brain: Quantitative autoradiographic localization using an iodinated ligand , 1988, Neuroscience.

[229]  T. Chase,et al.  Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms , 2000, Journal of Neurology.

[230]  M. Caron,et al.  Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[231]  M. Bevan,et al.  Short-term Depression of External Globus Pallidus-Subthalamic Nucleus Synaptic Transmission and Implications for Patterning Subthalamic Activity , 2013, The Journal of Neuroscience.

[232]  F. Cicchetti,et al.  Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. , 2014, Cell reports.

[233]  Adam G. Carter,et al.  GABAB receptor modulation of synaptic function , 2011, Current Opinion in Neurobiology.

[234]  M. Hallett,et al.  Phenomenology and classification of dystonia: A consensus update , 2013, Movement disorders : official journal of the Movement Disorder Society.

[235]  F. Gonon,et al.  Nigrostriatal lesion induces D2‐modulated phase‐locked activity in the basal ganglia of rats , 2007, The European journal of neuroscience.

[236]  T. Kita,et al.  Rat intralaminar thalamic nuclei projections to the globus pallidus: A biotinylated dextran amine anterograde tracing study , 2004, The Journal of comparative neurology.

[237]  R. M. Beckstead Association of dopamine d, and d2 receptors with specific cellular elements in the basal ganglia of the cat: The uneven topography of dopamine receptors in the striatum is determined by intrinsic striatal cells, not nigrostriatal axons , 1988, Neuroscience.

[238]  M. A. Ariano,et al.  D3 and D2 dopamine receptors: Visualization of cellular expression patterns in motor and limbic structures , 1995, Synapse.

[239]  J. Penney,et al.  Organization of N‐methyl‐D‐aspartate glutamate receptor gene expression in the basal ganglia of the rat , 1994, The Journal of comparative neurology.

[240]  Y. Smith,et al.  GABA transporter subtype 1 and GABA transporter subtype 3 modulate glutamatergic transmission via activation of presynaptic GABAB receptors in the rat globus pallidus , 2012, The European journal of neuroscience.

[241]  Masahiko Watanabe,et al.  Behavioral/systems/cognitive Selective Neural Pathway Targeting Reveals Key Roles of Thalamostriatal Projection in the Control of Visual Discrimination , 2022 .

[242]  G. Sperk,et al.  Distribution of the major γ‐aminobutyric acidA receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat , 2001, The Journal of comparative neurology.

[243]  Y. Yanagawa,et al.  Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse , 2013, The Journal of comparative neurology.

[244]  D. Feldmeyer,et al.  Identification of a native low‐conductance NMDA channel with reduced sensitivity to Mg2+ in rat central neurones. , 1996, The Journal of physiology.

[245]  Robert M. Beckstead,et al.  A pallidostriatal projection in the cat and monkey , 1983, Brain Research Bulletin.

[246]  H. V. Van Tol,et al.  Distribution of D2 dopamine receptor mRNA in rat brain. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[247]  A. Nambu,et al.  Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey , 1990, Brain Research.

[248]  G. Arbuthnott,et al.  Plasticity of striatopallidal terminals following unilateral lesion of the dopaminergic nigrostriatal pathway: a morphological study , 1997, Experimental Brain Research.

[249]  Hagai Bergman,et al.  Temporal Convergence of Dynamic Cell Assemblies in the Striato-Pallidal Network , 2012, The Journal of Neuroscience.

[250]  J. Fritschy,et al.  Comparison of the rat dorsal and ventral striatopallidal system A study using the GABAA-receptor α1-subunit and parvalbumin immunolabeling , 1998, Experimental Brain Research.

[251]  T. Baumann,et al.  Characteristics and somatotopic organization of kinesthetic cells in the globus pallidus of patients with Parkinson's disease. , 1996, Journal of neurosurgery.

[252]  A Golgi study on the globus pallidus of the mouse , 1979, Neuroscience Letters.

[253]  M. Martres,et al.  Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpride, a highly selective ligand. , 1985, Science.

[254]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[255]  Bente Pakkenberg,et al.  Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome--a stereological study. , 2011, Cerebral cortex.

[256]  T. Wichmann,et al.  The cortico‐pallidal projection: An additional route for cortical regulation of the basal ganglia circuitry , 2015, Movement disorders : official journal of the Movement Disorder Society.

[257]  I. Gotlib,et al.  Identification of a direct GABAergic pallidocortical pathway in rodents , 2015, The European journal of neuroscience.

[258]  Peter Brown,et al.  Effects of dopamine depletion on information flow between the subthalamic nucleus and external globus pallidus. , 2011, Journal of neurophysiology.

[259]  P. Gubellini,et al.  Distinct effects of mGlu4 receptor positive allosteric modulators at corticostriatal vs. striatopallidal synapses may differentially contribute to their antiparkinsonian action , 2014, Neuropharmacology.

[260]  Robert S Turner,et al.  Context-Dependent Modulation of Movement-Related Discharge in the Primate Globus Pallidus , 2005, The Journal of Neuroscience.

[261]  R. Traub,et al.  Neuronal networks for induced ‘40 Hz’ rhythms , 1996, Trends in Neurosciences.

[262]  M. Hallett,et al.  The pathophysiological basis of dystonias , 2008, Nature Reviews Neuroscience.

[263]  M. Mesulam,et al.  Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6) , 1983, Neuroscience.

[264]  Laura A. Bradfield,et al.  The Thalamostriatal Pathway and Cholinergic Control of Goal-Directed Action: Interlacing New with Existing Learning in the Striatum , 2013, Neuron.

[265]  J. Penney,et al.  Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia , 1999, The Journal of comparative neurology.

[266]  C. Waeber,et al.  [3H]sumatriptan labels both 5-HT1D and 5-HT1F receptor binding sites in the guinea pig brain: an autoradiographic study , 1995, Naunyn-Schmiedeberg's Archives of Pharmacology.

[267]  D James Surmeier,et al.  Proliferation of External Globus Pallidus-Subthalamic Nucleus Synapses following Degeneration of Midbrain Dopamine Neurons , 2012, The Journal of Neuroscience.

[268]  W. Hauber,et al.  The effects of globus pallidus lesions on dopamine-dependent motor behaviour in rats , 1998, Neuroscience.

[269]  I. Stanford,et al.  Calbindin D-28k positive projection neurones and calretinin positive interneurones of the rat globus pallidus , 2002, Brain Research.

[270]  Cengiz Günay,et al.  Channel Density Distributions Explain Spiking Variability in the Globus Pallidus: A Combined Physiology and Computer Simulation Database Approach , 2008, The Journal of Neuroscience.

[271]  E A Barnard,et al.  International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. , 1998, Pharmacological reviews.

[272]  R. Faull,et al.  GABAA receptors in the primate basal ganglia: An autoradiographic and a light and electron microscopic immunohistochemical study of the α1 and β2,3 subunits in the baboon brain , 1998, The Journal of comparative neurology.

[273]  H. Kita,et al.  Serotonin activates presynaptic and postsynaptic receptors in rat globus pallidus. , 2008, Journal of neurophysiology.

[274]  Hitoshi Kita,et al.  Presynaptic actions of D2-like receptors in the rat cortico-striato-globus pallidus disynaptic connection in vitro. , 2009, Journal of neurophysiology.

[275]  H. Kita,et al.  Serotonin Modulates Pallidal Neuronal Activity in the Awake Monkey , 2007, The Journal of Neuroscience.

[276]  A. Wenzel,et al.  Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain , 1995, Neuroreport.

[277]  S. Alford,et al.  G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. , 2001, Science.

[278]  D. Standaert,et al.  Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[279]  R. Nicoll,et al.  A bicuculline‐resistant inhibitory post‐synaptic potential in rat hippocampal pyramidal cells in vitro. , 1984, The Journal of physiology.

[280]  D James Surmeier,et al.  HCN2 and HCN1 Channels Govern the Regularity of Autonomous Pacemaking and Synaptic Resetting in Globus Pallidus Neurons , 2004, The Journal of Neuroscience.

[281]  K. Deisseroth Optogenetics: 10 years of microbial opsins in neuroscience , 2015, Nature Neuroscience.

[282]  I. Bar-Gad,et al.  Globus Pallidus External Segment Neuron Classification in Freely Moving Rats: A Comparison to Primates , 2012, PloS one.

[283]  R. Awatramani,et al.  Molecular heterogeneity of midbrain dopaminergic neurons – Moving toward single cell resolution , 2015, FEBS letters.

[284]  M. Ishida,et al.  The COUP-TFII/Neuropilin-2 is a molecular switch steering diencephalon-derived GABAergic neurons in the developing mouse brain , 2015, Proceedings of the National Academy of Sciences.

[285]  Y. Smith,et al.  Anatomy of the dopamine system in the basal ganglia , 2000, Trends in Neurosciences.

[286]  S. Duty,et al.  Activation of group III metabotropic glutamate receptors in selected regions of the basal ganglia alleviates akinesia in the reserpine‐treated rat , 2004, British journal of pharmacology.

[287]  E. Vaadia,et al.  Encoding of probabilistic rewarding and aversive events by pallidal and nigral neurons. , 2009, Journal of neurophysiology.

[288]  J. Vitek,et al.  Stimulation of the Subthalamic Nucleus Changes the Firing Pattern of Pallidal Neurons , 2003, The Journal of Neuroscience.

[289]  C. Parsons,et al.  Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. , 1998, Pharmacological reviews.

[290]  Daniel K. Leventhal,et al.  Arkypallidal Cells Send a Stop Signal to Striatum , 2016, Neuron.

[291]  K Watanabe,et al.  Neural information transferred from the putamen to the globus pallidus during learned movement in the monkey. , 1996, Journal of neurophysiology.

[292]  G. Sperk,et al.  GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. , 2000, Neuroscience.

[293]  A. Parent,et al.  Differential dopaminergic innervation of the two pallidal segments in the squirrel monkey (Saimiri sciureus) , 1987, Brain Research.

[294]  O. Valenti,et al.  Modulation of Inhibitory Transmission in the Rat Globus Pallidus by Activation of mGluR4 , 2003, Annals of the New York Academy of Sciences.

[295]  S. T. Kitai,et al.  Medium spiny neuron projection from the rat striatum: An intracellular horseradish peroxidase study , 1980, Brain Research.

[296]  Luis E. Gonzalez-Reyes,et al.  Sonic Hedgehog Maintains Cellular and Neurochemical Homeostasis in the Adult Nigrostriatal Circuit , 2012, Neuron.

[297]  F. Fujiyama,et al.  Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron‐tracing study using a viral vector , 2011, The European journal of neuroscience.

[298]  P. Schofield The GABAA receptor: molecular biology reveals a complex picture. , 1989, Trends in pharmacological sciences.

[299]  W. T. Thach,et al.  Basal ganglia motor control. I. Nonexclusive relation of pallidal discharge to five movement modes. , 1991, Journal of neurophysiology.

[300]  H. Kita,et al.  The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine , 1994, Brain Research.

[301]  Dieter Jaeger,et al.  Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching movements , 1995, Brain Research.

[302]  Martin Parent,et al.  Quantitative and ultrastructural study of serotonin innervation of the globus pallidus in squirrel monkeys , 2013, The European journal of neuroscience.

[303]  Werner Sieghart,et al.  International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update , 2008, Pharmacological Reviews.

[304]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[305]  Ling Fu,et al.  Whole-Brain Mapping of Inputs to Projection Neurons and Cholinergic Interneurons in the Dorsal Striatum , 2015, PloS one.

[306]  A. Charara,et al.  GABAB and group I metabotropic glutamate receptors in the striatopallidal complex in primates , 2000, Journal of anatomy.

[307]  Anatol C. Kreitzer,et al.  Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons , 2013, Neuron.

[308]  G. Köhr,et al.  Role of heteromer formation in GABAB receptor function. , 1999, Science.

[309]  U. Rudolph,et al.  Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. , 2004, Annual review of pharmacology and toxicology.

[310]  E. Boyden Optogenetics and the future of neuroscience , 2015, Nature Neuroscience.

[311]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[312]  Atsushi Nambu,et al.  Morphology of globus pallidus neurons: Its correlation with electrophysiology in guinea pig brain slices , 1997, The Journal of comparative neurology.

[313]  P. Osborne,et al.  Electrophysiological properties of cholinergic and noncholinergic neurons in the ventral pallidal region of the nucleus basalis in rat brain slices. , 2000, Journal of neurophysiology.

[314]  Alexander B. Wiltschko,et al.  Selective Activation of Striatal Fast-Spiking Interneurons during Choice Execution , 2010, Neuron.

[315]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[316]  Christer Halldin,et al.  Autoradiographic localization of extrastriatal D2‐dopamine receptors in the human brain using [125I]epidepride , 1996, Synapse.

[317]  G. Perea,et al.  Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways , 2015, Science.

[318]  Alan Wise,et al.  Heterodimerization is required for the formation of a functional GABAB receptor , 1998, Nature.

[319]  Gavin L. Woodhall,et al.  Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro , 2008, The European journal of neuroscience.

[320]  C. Hammond,et al.  High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. , 2001, Journal of neurophysiology.

[321]  A. Parent,et al.  Morphological changes in serotoninergic neurites in the striatum and globus pallidus in levodopa primed MPTP treated common marmosets with dyskinesia , 2010, Neurobiology of Disease.

[322]  A. Jayaraman Topographic organization and morphology of peripallidal and pallidal cells projecting to the striatum in cats , 1983, Brain Research.

[323]  J. Schipper,et al.  Eltoprazine, a drug which reduces aggressive behaviour, binds selectively to 5-HT1 receptor sites in the rat brain: an autoradiographic study. , 1990, European journal of pharmacology.

[324]  B. Averbeck,et al.  Effects of Dopamine Depletion on Network Entropy in the External Globus Pallidus , 2009, Journal of neurophysiology.

[325]  S. Alford,et al.  G Protein βγ Subunit-Mediated Presynaptic Inhibition: Regulation of Exocytotic Fusion Downstream of Ca2+ Entry , 2001, Science.

[326]  T. Heida,et al.  Pallidal gap junctions-triggers of synchrony in Parkinson's disease? , 2014, Movement disorders : official journal of the Movement Disorder Society.

[327]  Jean-Michel Deniau,et al.  Striatal Medium-Sized Spiny Neurons: Identification by Nuclear Staining and Study of Neuronal Subpopulations in BAC Transgenic Mice , 2009, PloS one.

[328]  P. Goldman-Rakic,et al.  Localization of dopamine D4 receptors in GABAergic neurons of the primate brain , 1996, Nature.

[329]  M. Hamon,et al.  Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies , 1999, Neuroscience.

[330]  H. Fibiger,et al.  Demonstration of a pallido‐nigral projection innervating dopaminergic neurons , 1975, The Journal of comparative neurology.

[331]  A. Parent,et al.  The striatopallidal projection displays a high degree of anatomical specificity in the primate , 1992, Brain Research.

[332]  M. Chen,et al.  Glutamate-Dependent Neuroglial Calcium Signaling Differs Between Young and Adult Brain , 2013, Science.

[333]  J. Féger,et al.  Identification of different subpopulations of neostriatal neurones projecting to globus pallidus or substantia nigra in the monkey: A retrograde fluorescence double-labelling study , 1984, Neuroscience Letters.

[334]  Hagai Bergman,et al.  Functional Correlations between Neighboring Neurons in the Primate Globus Pallidus Are Weak or Nonexistent , 2003, The Journal of Neuroscience.

[335]  P. Brotchie,et al.  Motor function of the monkey globus pallidus. 1. Neuronal discharge and parameters of movement. , 1991, Brain : a journal of neurology.

[336]  A. Parent,et al.  Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A PHA‐L study of subcortical projections , 1992, The Journal of comparative neurology.

[337]  L. Descarries,et al.  Somatodendritic localization of 5‐HT1A and preterminal axonal localization of 5‐HT1B serotonin receptors in adult rat brain , 2000, The Journal of comparative neurology.

[338]  V. Murthy,et al.  Synaptic gain control and homeostasis , 2003, Current Opinion in Neurobiology.

[339]  H. Akil,et al.  Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization- receptor autoradiographic analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[340]  J. Palacios,et al.  Serotonin 5‐HT1D Receptors , 1990, Annals of the New York Academy of Sciences.

[341]  Oscar Marín,et al.  Origin and Molecular Specification of Globus Pallidus Neurons , 2010, The Journal of Neuroscience.

[342]  J. Joyce,et al.  Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[343]  M. Sofroniew,et al.  Astrocytes: biology and pathology , 2009, Acta Neuropathologica.

[344]  C. François,et al.  Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus , 2005, Experimental Neurology.

[345]  KouichiC . Nakamura,et al.  Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus , 2015, The Journal of Neuroscience.

[346]  B. Scatton,et al.  Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SKF 38393. , 1985, European journal of pharmacology.

[347]  B. Givens,et al.  Dopamine electrophysiology of ventral pallidal/substantia innominata neurons: comparison with the dorsal globus pallidus. , 1991, The Journal of pharmacology and experimental therapeutics.

[348]  N. Rajakumar,et al.  The pallidostriatal projection in the rat: a recurrent inhibitory loop? , 1994, Brain Research.

[349]  P. Bonaventure,et al.  Mapping of serotonin 5‐HT4 receptor mRNA and ligand binding sites in the post‐mortem human brain , 2000, Synapse.

[350]  P. Redgrave,et al.  High-frequency electrical stimulation of the subthalamic nucleus excites target structures in a model using c-fos immunohistochemistry , 2014, Neuroscience.

[351]  C. Wilson,et al.  Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[352]  R. Bogacz,et al.  Effective connectivity of the subthalamic nucleus–globus pallidus network during Parkinsonian oscillations , 2014, The Journal of physiology.

[353]  D. James Surmeier,et al.  Heterosynaptic Regulation of External Globus Pallidus Inputs to the Subthalamic Nucleus by the Motor Cortex , 2015, Neuron.

[354]  Dagoberto Tapia,et al.  Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. , 2006, Journal of neurophysiology.

[355]  T. Kuner,et al.  Multiple Structural Elements Determine Subunit Specificity of Mg2+ Block in NMDA Receptor Channels , 1996, The Journal of Neuroscience.

[356]  H. Kita,et al.  Reduced Pallidal Output Causes Dystonia , 2011, Front. Syst. Neurosci..

[357]  KouichiC . Nakamura,et al.  Dichotomous Organization of the External Globus Pallidus , 2012, Neuron.

[358]  R. Faull,et al.  The diversity of GABA(A) receptor subunit distribution in the normal and Huntington's disease human brain. , 2015, Advances in pharmacology.

[359]  G. Percheron,et al.  Spatial relationships between striatal axonal endings and pallidal neurons in macaque monkeys. , 1997, Advances in neurology.

[360]  G. Bernardi,et al.  Group I mGluRs modulate calcium currents in rat GP: Functional implications , 1998, Synapse.

[361]  Anatol C. Kreitzer,et al.  Distinct roles for direct and indirect pathway striatal neurons in reinforcement , 2012, Nature Neuroscience.

[362]  Bernhard Haslinger,et al.  Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease , 2005, NeuroImage.

[363]  E. Yoon,et al.  Gβγ Interferes with Ca2+-Dependent Binding of Synaptotagmin to the Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor (SNARE) Complex , 2007, Molecular Pharmacology.

[364]  J. Morys,et al.  Distribution of the parvalbumin, calbindin-D28K and calretinin immunoreactivity in globus pallidus of the Brazilian short-tailed opossum (Monodelphis domestica). , 2007, Acta neurobiologiae experimentalis.

[365]  T. Moriizumi,et al.  Electron microscopic analysis of the synaptic organization of the globus pallidus in the cat , 1987, The Journal of comparative neurology.

[366]  J. Greenamyre,et al.  Polysynaptic regulation of glutamate receptors and mitochondrial enzyme activities in the basal ganglia of rats with unilateral dopamine depletion , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[367]  M. Masu,et al.  Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4 , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[368]  Jeanne T Paz,et al.  Microcircuits and their interactions in epilepsy: is the focus out of focus? , 2015, Nature Neuroscience.

[369]  R. M. Beckstead,et al.  Distribution of D1 and D2 dopamine receptors in the basal ganglia of the cat determined by quantitative autoradiography , 1988, The Journal of comparative neurology.

[370]  E. Abercrombie,et al.  Relative involvement of globus pallidus and subthalamic nucleus in the regulation of somatodendritic dopamine release in substantia nigra is dopamine-dependent , 2003, Neuroscience.

[371]  E. Vaadia,et al.  Firing Patterns and Correlations of Spontaneous Discharge of Pallidal Neurons in the Normal and the Tremulous 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Vervet Model of Parkinsonism , 2000, The Journal of Neuroscience.

[372]  J. Bolam,et al.  Subcellular and subsynaptic distribution of the NR1 subunit of the NMDA receptor in the neostriatum and globus pallidus of the rat: co‐localization at synapses with the GluR2/3 subunit of the AMPA receptor , 1998, The European journal of neuroscience.

[373]  W. Staines,et al.  Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[374]  K. F. Schroeder,et al.  Morphometric studies of the neuropathological changes in choreatic diseases , 1976, Journal of the Neurological Sciences.

[375]  J. Palacios,et al.  Dopamine D2 receptors in the rat brain: autoradiographic visualization using a high-affinity selective agonist ligand , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[376]  E. Esposito,et al.  Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders. , 2008, Progress in brain research.

[377]  L. Tremblay,et al.  Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism , 1991, Brain Research.

[378]  M. Brecht,et al.  Sparse and powerful cortical spikes , 2010, Current Opinion in Neurobiology.

[379]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[380]  H. Bergman,et al.  Different correlation patterns of cholinergic and GABAergic interneurons with striatal projection neurons , 2013, Front. Syst. Neurosci..

[381]  Charles J. Wilson,et al.  Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson's disease , 2011, Neuroscience.

[382]  R. Porter,et al.  GluR1 Glutamate Receptor Subunit Is Regulated Differentially in the Primate Basal Ganglia Following Nigrostriatal Dopamine Denervation , 2000, Journal of neurochemistry.

[383]  T. Wichmann,et al.  The thalamostriatal system in normal and diseased states , 2014, Front. Syst. Neurosci..

[384]  S. Mague,et al.  NMDA receptor antagonists ameliorate the stepping deficits produced by unilateral medial forebrain bundle injections of 6-OHDA in rats , 2004, Psychopharmacology.

[385]  Abdelhamid Benazzouz,et al.  Dopaminergic Control of the Globus Pallidus through Activation of D2 Receptors and Its Impact on the Electrical Activity of Subthalamic Nucleus and Substantia Nigra Reticulata Neurons , 2015, PloS one.

[386]  Pierre Payoux,et al.  Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. , 2004, Archives of neurology.

[387]  F. Fujiyama,et al.  Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector , 2013, The Journal of comparative neurology.

[388]  A. Nambu,et al.  The distribution of the globus pallidus neurons with input from various cortical areas in the monkeys , 1993, Brain Research.

[389]  Y. Kubota,et al.  Regional and cellular localisation of GABAA receptor subunits in the human basal ganglia: An autoradiographic and immunohistochemical study , 1999, The Journal of comparative neurology.

[390]  M. Śmiałowska,et al.  A biphasic influence of globus pallidus lesions: Spontaneous catalepsy followed by anticataleptic effect , 1983, Pharmacology Biochemistry and Behavior.

[391]  A. Parent,et al.  Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates , 2014, Brain Structure and Function.

[392]  A. Charara,et al.  Pre- and postsynaptic localization of GABAB receptors in the basal ganglia in monkeys , 1999, Neuroscience.

[393]  L. Riquelme,et al.  Distinct changes in evoked and resting globus pallidus activity in early and late Parkinson's disease experimental models , 2007, The European journal of neuroscience.

[394]  J. Paysan,et al.  Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[395]  W. Koller,et al.  Pharmacologic treatment of parkinsonian tremor. , 1986, Archives of neurology.

[396]  Jérôme Baufreton,et al.  D2‐like dopamine receptor‐mediated modulation of activity‐dependent plasticity at GABAergic synapses in the subthalamic nucleus , 2008, The Journal of physiology.

[397]  B. Bunney,et al.  The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique , 1976, Brain Research.

[398]  Anatol C. Kreitzer,et al.  Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons , 2013, The Journal of Neuroscience.

[399]  H. Kita,et al.  Efferent projections of the subthalamic nucleus in the rat: Light and electron microscopic analysis with the PHA‐L method , 1987, The Journal of comparative neurology.

[400]  K. Jellinger,et al.  New developments in the pathology of Parkinson's disease. , 1990, Advances in neurology.

[401]  D. Joel,et al.  The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry , 1997, Brain Research Reviews.

[402]  Y Agid,et al.  Dopaminergic innervation of the pallidum in the normal state, in MPTP‐treated monkeys and in parkinsonian patients , 2000, The European journal of neuroscience.

[403]  H. Kita,et al.  Excitatory Cortical Inputs to Pallidal Neurons Via the Subthalamic Nucleus in the Monkey , 2000 .

[404]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[405]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[406]  J. Bolam,et al.  Relationship of Activity in the Subthalamic Nucleus–Globus Pallidus Network to Cortical Electroencephalogram , 2000, The Journal of Neuroscience.

[407]  S. Charpier,et al.  Rhythmic Bursting in the Cortico-Subthalamo-Pallidal Network during Spontaneous Genetically Determined Spike and Wave Discharges , 2005, The Journal of Neuroscience.

[408]  Gilles Laurent,et al.  Olfactory network dynamics and the coding of multidimensional signals , 2002, Nature Reviews Neuroscience.

[409]  J. Bolam,et al.  Synaptic Integration of Functionally Diverse Pallidal Information in the Entopeduncular Nucleus and Subthalamic Nucleus in the Rat , 1997, The Journal of Neuroscience.

[410]  F. Stephenson,et al.  The GABAA receptors. , 1995, The Biochemical journal.

[411]  Naoshige Uchida,et al.  Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. , 2014, Cell reports.

[412]  J. Schneider,et al.  Behaviorally specific limb use deficits following globus pallidus lesions in rats , 1984, Brain Research.

[413]  Hagai Bergman,et al.  Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates , 1999, Experimental Brain Research.

[414]  J. Penney,et al.  The functional anatomy of disorders of the basal ganglia , 1995, Trends in Neurosciences.

[415]  Kyle S. Smith,et al.  Investigating habits: strategies, technologies and models , 2014, Front. Behav. Neurosci..

[416]  S. Nakanishi,et al.  Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: An in situ hybridization study , 1993, The Journal of comparative neurology.

[417]  B. Costall,et al.  Catalepsy and circling behaviour after intracerebral injections of neuroleptic, cholinergic and anticholinergic agents into the caudate-putamen, globus pallidus and substantia nigra of rat brain. , 1972, Neuropharmacology.

[418]  Adam Ponzi,et al.  Sequentially Switching Cell Assemblies in Random Inhibitory Networks of Spiking Neurons in the Striatum , 2010, The Journal of Neuroscience.

[419]  G. M. Halliday,et al.  Loss of brainstem serotonin- and substance P-containing neurons in Parkinson's disease , 1990, Brain Research.

[420]  A. Flaherty,et al.  Input-output organization of the sensorimotor striatum in the squirrel monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[421]  Robert C. Thompson,et al.  The distribution of dopamine D2 receptor heteronuclear RNA (hnRNA) in the rat brain , 1993, Journal of Chemical Neuroanatomy.

[422]  J. Marshall,et al.  The role of the globus pallidus D2 subfamily of dopamine receptors in pallidal immediate early gene expression , 2001, Neuroscience.

[423]  M R Park,et al.  An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis , 1982, The Journal of comparative neurology.

[424]  Nathan C. Klapoetke,et al.  Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance , 2015, Neuron.

[425]  T. Blackburn,et al.  Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS , 2000, Neuropharmacology.

[426]  C. Gerfen,et al.  Modulation of striatal projection systems by dopamine. , 2011, Annual review of neuroscience.

[427]  D. A. Bergstrom,et al.  Apomorphine increases the activity of rat globus pallidus neurons , 1982, Brain Research.

[428]  W. Yung,et al.  Behavioral and electrophysiological effects of 5‐HT in globus pallidus of 6‐hydroxydopamine lesioned rats , 2009, Journal of neuroscience research.

[429]  P Jeffrey Conn,et al.  Group III Metabotropic Glutamate Receptor-Mediated Modulation of the Striatopallidal Synapse , 2003, The Journal of Neuroscience.

[430]  Adam G. Carter,et al.  GABAB Receptors Modulate NMDA Receptor Calcium Signals in Dendritic Spines , 2010, Neuron.

[431]  Jérôme Baufreton,et al.  GABAergic control of the subthalamic nucleus. , 2007, Progress in brain research.

[432]  E. Vaadia,et al.  Independent Coding of Movement Direction and Reward Prediction by Single Pallidal Neurons , 2004, The Journal of Neuroscience.

[433]  S. Marino,et al.  Basal ganglia network by constrained spherical deconvolution: A possible cortico‐pallidal pathway? , 2015, Movement disorders : official journal of the Movement Disorder Society.

[434]  W. T. Thach,et al.  Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. , 1991, Journal of neurophysiology.

[435]  S. T. Kitai,et al.  Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study. , 1981, Science.

[436]  M. Pangalos,et al.  GABAB Receptors: A New Paradigm in G Protein Signaling , 2000, Molecular and Cellular Neuroscience.

[437]  R. Mcquade,et al.  CNS distribution of D1 receptors: Use of a new specific D1 receptor antagonist, [3H]SCH39166 , 1992, Neurochemistry International.

[438]  J. Marshall,et al.  Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus , 2002, Neuroscience.

[439]  W Wisden,et al.  The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[440]  G. Vauquelin,et al.  Autoradiographic distribution of D3-type dopamine receptors in human brain using [3H]7-hydroxy-N,N-di-n-propyl-2-aminotetralin , 1994, Brain Research.

[441]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[442]  S. Kish Biochemistry of Parkinson's disease: is a brain serotonergic deficiency a characteristic of idiopathic Parkinson's disease? , 2003, Advances in neurology.

[443]  K. Rhodes,et al.  Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia , 1999, The Journal of comparative neurology.

[444]  P. Somogyi,et al.  The γ2 Subunit of the GABAA Receptor is Concentrated in Synaptic Junctions Containing the α1 and β 2 3 Subunits in Hippocampus, Cerebellum and Globus Pallidus , 1996, Neuropharmacology.

[445]  Hitoshi Kita,et al.  Cortical Stimulation Evokes Abnormal Responses in the Dopamine-Depleted Rat Basal Ganglia , 2011, The Journal of Neuroscience.

[446]  M. Lévesque,et al.  Raclopride-induced motor consolidation impairment in primates: role of the dopamine type-2 receptor in movement chunking into integrated sequences , 2007, Experimental Brain Research.

[447]  L. Tremblay,et al.  Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys , 1988, Brain Research.

[448]  Christian Rosenmund,et al.  Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion , 2011, Journal of Cell Science.

[449]  T. Chase,et al.  Quantitative autoradiographic localization of D-1 dopamine receptors in the rat brain: Use of the iodinated ligand [125I]SCH 23982 , 1986, Neuroscience Letters.

[450]  Astrocytes go awry in Huntington's disease , 2014, Nature Neuroscience.

[451]  T. Hattori,et al.  Separate neuronal populations of the rat globus pallidus projecting to the subthalamic nucleus, auditory cortex and pedunculopontine tegmental area , 1992, Neuroscience.

[452]  P. Salin,et al.  Lesion Study of the Distribution of Serotonin 5‐HT4 Receptors in Rat Basal Ganglia and Hippocampus , 1996, The European journal of neuroscience.

[453]  Charles J. Wilson,et al.  Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo , 1998, Nature.

[454]  Charles J. Wilson,et al.  Spontaneous firing patterns of identified spiny neurons in the rat neostriatum , 1981, Brain Research.

[455]  H. Kita,et al.  Synaptically released GABA activates both pre- and postsynaptic GABA(B) receptors in the rat globus pallidus. , 2005, Journal of neurophysiology.

[456]  S. Oliet,et al.  Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. , 2008, Physiological reviews.

[457]  M. Savasta,et al.  Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390 , 1986, Brain Research.

[458]  W. Hauber,et al.  Dopamine D1 or D2 receptor blockade in the globus pallidus produces akinesia in the rat , 1999, Behavioural Brain Research.

[459]  Caroline A. Johnson,et al.  A direct GABAergic output from the basal ganglia to frontal cortex , 2014, Nature.

[460]  Jerrold L. Vitek,et al.  External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network , 2012, Experimental Neurology.

[461]  H. Nauta Projections of the pallidal complex: An autoradiographic study in the cat , 1979, Neuroscience.

[462]  O. E. Millhouse Pallidal neurons in the rat , 1986, The Journal of comparative neurology.

[463]  W. Sieghart,et al.  Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. , 1995, Pharmacological reviews.

[464]  K. Moriyoshi,et al.  Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. , 1993, The Journal of biological chemistry.

[465]  H. Kita Responses of globus pallidus neurons to cortical stimulation: intracellular study in the rat , 1992, Brain Research.

[466]  A. Parent,et al.  Compartmental distribution of parvalbumin and calbindin D-28k in rat globus pallidus. , 1994, NeuroReport.

[467]  A. D. Smith,et al.  A correlated light and electron microscopic study of identified cholinergic basal forebrain neurons that project to the cortex in the rat , 1985, The Journal of comparative neurology.

[468]  T. Yasuhara,et al.  Intrapallidal metabotropic glutamate receptor activation in a rat model of Parkinson's disease: Behavioral and histological analyses , 2008, Brain Research.

[469]  J. Rothstein,et al.  Mechanisms of Disease: astrocytes in neurodegenerative disease , 2006, Nature Clinical Practice Neurology.

[470]  M. Delong,et al.  Acute stimulation in the external segment of the globus pallidus improves parkinsonian motor signs , 2004, Movement disorders : official journal of the Movement Disorder Society.

[471]  A. Carlsson,et al.  The occurrence, distribution and physiological role of catecholamines in the nervous system. , 1959, Pharmacological reviews.

[472]  R. Turner,et al.  Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque. , 2005, Journal of neurophysiology.

[473]  H Mushiake,et al.  Pallidal neuron activity during sequential arm movements. , 1995, Journal of neurophysiology.

[474]  H. Kita,et al.  Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. , 2004, Journal of neurophysiology.

[475]  J. Rothstein,et al.  Glutamate Transporter Protein Subtypes Are Expressed Differentially during Rat CNS Development , 1997, The Journal of Neuroscience.

[476]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[477]  P. Haydon,et al.  Gephyrin Regulates the Cell Surface Dynamics of Synaptic GABAA Receptors , 2005, The Journal of Neuroscience.

[478]  Joshua L. Plotkin,et al.  Synaptically driven state transitions in distal dendrites of striatal spiny neurons , 2011, Nature Neuroscience.

[479]  L. Tremblay,et al.  Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum , 1995, Neuroscience.

[480]  J. Bolam,et al.  Synaptic organisation of the basal ganglia , 2000, Journal of anatomy.

[481]  S. Nagel,et al.  Preserving cortico-striatal function: deep brain stimulation in Huntington’s disease , 2015, Front. Syst. Neurosci..

[482]  J. Pilitsis,et al.  Gap junction blockers attenuate beta oscillations and improve forelimb function in hemiparkinsonian rats , 2015, Experimental Neurology.

[483]  Vivian M. Hernández,et al.  Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus , 2015, The Journal of Neuroscience.

[484]  Charles J. Wilson,et al.  Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs. , 2002, Journal of neurophysiology.

[485]  T. Klockgether,et al.  Functional characterization and expression of thalamic GABAB receptors in a rodent model of Parkinson’s disease , 1999, Neuropharmacology.

[486]  A. Panatier,et al.  Astrocytic mGluR5 and the tripartite synapse , 2016, Neuroscience.

[487]  Ian R. Wickersham,et al.  Convergent cortical innervation of striatal projection neurons , 2013, Nature Neuroscience.

[488]  R. Faull,et al.  The distribution of GABAA-benzodiazepine receptors in the basal ganglia in Huntington's disease and in the quinolinic acid-lesioned rat. , 1993, Progress in brain research.

[489]  J. Penney,et al.  Evidence for a projection from the globus pallidus to the entopeduncular nucleus in the rat , 1991, Neuroscience Letters.

[490]  A. Sahs,et al.  Amantadine in Parkinson's disease , 1975, Neurology.

[491]  Bert Sakmann,et al.  Heteromeric NMDA Receptors: Molecular and Functional Distinction of Subtypes , 1992, Science.

[492]  J. Dostrovsky,et al.  Neuronal firing rates and patterns in the globus pallidus internus of patients with cervical dystonia differ from those with Parkinson's disease. , 2007, Journal of neurophysiology.

[493]  Erwan Bezard,et al.  Altered pallido‐pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson's disease , 2012, The Journal of physiology.

[494]  N. Heintz Gene Expression Nervous System Atlas (GENSAT) , 2004, Nature Neuroscience.

[495]  O. Hornykiewicz,et al.  Globus pallidus dopamine and Parkinson motor subtypes , 2008, Neurology.

[496]  C. McIntyre,et al.  Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington’s disease , 2014, Brain Structure and Function.

[497]  W Wisden,et al.  The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[498]  J. Paul Bolam,et al.  Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? , 2004, Trends in Neurosciences.

[499]  H. Kita,et al.  Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus , 2003, Neuroscience.

[500]  Yasuyoshi Watanabe,et al.  Unique expression patterns of 5‐HT2A and 5‐HT2C receptors in the rat brain during postnatal development: Western blot and immunohistochemical analyses , 2004, The Journal of comparative neurology.

[501]  O. Hornykiewicz,et al.  Homovanillic acid in different regions of the human brain: attempt at localizing central dopamine fibres. , 1968, Brain research.

[502]  T. Hromádka,et al.  Sparse Representation of Sounds in the Unanesthetized Auditory Cortex , 2008, PLoS biology.

[503]  M. M. Morrow,et al.  New Roles for the External Globus Pallidus in Basal Ganglia Circuits and Behavior , 2014, The Journal of Neuroscience.

[504]  I. M. Stanford,et al.  Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABAA IPSCs in vitro , 2001, Neuropharmacology.

[505]  N. Canteras,et al.  Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat , 1990, Brain Research.

[506]  A. Triller,et al.  Association of gephyrin with synaptic and extrasynaptic GABAa receptors varies during development in cultured hippocampal neurons , 2003, Molecular and Cellular Neuroscience.

[507]  J. Bolam,et al.  Subcellular localization of GABAB receptor subunits in rat globus pallidus , 2004, The Journal of comparative neurology.

[508]  D. Joel,et al.  Electrolytic lesion of globus pallidus ameliorates the behavioral and neurodegenerative effects of quinolinic acid lesion of the striatum: a potential novel treatment in a rat model of Huntington's disease , 1998, Brain Research.

[509]  C. Gerfen,et al.  Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study , 1988, Brain Research.

[510]  R. Shin,et al.  Dopamine D4 Receptor-Induced Postsynaptic Inhibition of GABAergic Currents in Mouse Globus Pallidus Neurons , 2003, The Journal of Neuroscience.

[511]  G. Sperk,et al.  GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain , 2000, Neuroscience.

[512]  G. Dawson,et al.  Loss of the Major GABAA Receptor Subtype in the Brain Is Not Lethal in Mice , 2001, The Journal of Neuroscience.

[513]  R. Llinás,et al.  Electrophysiology of globus pallidus neurons in vitro. , 1994, Journal of neurophysiology.

[514]  Jilly F. Evans,et al.  Identification of a GABAB Receptor Subunit, gb2, Required for Functional GABAB Receptor Activity* , 1999, The Journal of Biological Chemistry.

[515]  C. Gall,et al.  Dopaminergic neurons in rat ventral midbrain express brain‐derived neurotrophic factor and neurotrophin‐3 mRNAs , 1994, The Journal of comparative neurology.

[516]  S. Duty,et al.  effect of unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway on GABAA receptor subunit gene expression in the rodent basal ganglia and thalamus , 1999, Neuroscience.

[517]  Serotonin in pallidal neuronal circuits: an immunocytochemical study in monkeys. , 1984, Advances in neurology.

[518]  Y. Smith,et al.  Group I Metabotropic Glutamate Receptors at GABAergic Synapses in Monkeys , 1999, The Journal of Neuroscience.

[519]  J. Fallon,et al.  Catecholamine innervation of the basal forebrain IV. Topography of the dopamine projection to the basal forebrain and neostriatum , 1978, The Journal of comparative neurology.

[520]  N. Mizuno,et al.  Direct projections from the globus pallidus to the midbrain and pons in the cat , 1992, Neuroscience Letters.

[521]  C. Wilson,et al.  Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. , 1989, Journal of neurophysiology.

[522]  F. Mettler,et al.  Nigrofugal connections in the primate brain , 1970, The Journal of comparative neurology.

[523]  J. Hedreen Tyrosine hydroxylase‐immunoreactive elements in the human globus pallidus and subthalamic nucleus , 1999, The Journal of comparative neurology.

[524]  J. Rothwell,et al.  Firing patterns of pallidal cells in Parkinsonian patients correlate with their pre‐pallidotomy clinical scores , 2000, Neuroreport.

[525]  J. Marshall,et al.  Population characteristics of preproenkephalin mRNA-containing neurons in the globus pallidus of the rat , 1999, Neuroscience Letters.

[526]  M. E. Anderson,et al.  Pallidal discharge related to the kinematics of reaching movements in two dimensions. , 1997, Journal of neurophysiology.

[527]  J. Marshall,et al.  Molecular, chemical, and anatomical characterization of globus pallidus dopamine D2 receptor mRNA‐containing neurons , 2004, Synapse.

[528]  Y. Smith,et al.  Neuroglial Plasticity at Striatal Glutamatergic Synapses in Parkinson's Disease , 2011, Front. Syst. Neurosci..

[529]  Sachie K. Ogawa,et al.  Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons , 2012, Neuron.

[530]  J. Walters,et al.  Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat , 1988, Synapse.

[531]  T. Wichmann,et al.  Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: Ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex , 2013, Neuropharmacology.

[532]  H. Moore,et al.  Dopamine D2 Receptors Regulate the Anatomical and Functional Balance of Basal Ganglia Circuitry , 2014, Neuron.

[533]  A. Wenzel,et al.  Developmental and Regional Expression of NMDA Receptor Subtypes Containing the NR2D Subunit in Rat Brain , 1996, Journal of neurochemistry.

[534]  S. Hersch,et al.  The dopamine transporter: immunochemical characterization and localization in brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[535]  M. E. Anderson,et al.  An electrophysiological characterization of projections from the pedunculopontine area to entopeduncular nucleus and globus pallidus in the cat , 2004, Experimental Brain Research.

[536]  Daniel K. Leventhal,et al.  Dissociable effects of dopamine on learning and performance within sensorimotor striatum. , 2014, Basal ganglia.

[537]  M. Delong,et al.  The primate globus pallidus: neuronal activity related to direction of movement , 2004, Experimental Brain Research.

[538]  Michael M. Halassa,et al.  The tripartite synapse: roles for gliotransmission in health and disease. , 2007, Trends in molecular medicine.

[539]  T. Pasik,et al.  A Golgi study of neuronal types in the neostriatum of monkeys , 1976, Brain Research.

[540]  Y. Smith,et al.  The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey , 1996, Neuroscience.

[541]  S. Oliet,et al.  Gliotransmitters Travel in Time and Space , 2014, Neuron.

[542]  H. Lester,et al.  Nicotinic Receptor Subtype-Selective Circuit Patterns in the Subthalamic Nucleus , 2015, The Journal of Neuroscience.

[543]  W. Hauber,et al.  Dopaminergic innervation of the rat globus pallidus characterized by microdialysis and immunohistochemistry , 2003, Experimental Brain Research.

[544]  P. Somogyi,et al.  Projection of neostriatal spiny neurons to the substantia nigra. Application of a combined golgi-staining and horse-radish peroxidase transport procedure at both light and electron microscopic levels , 1979, Brain Research.

[545]  P. Molinoff,et al.  Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[546]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons, other neuronal types, and afferent axons , 1984, The Journal of comparative neurology.

[547]  J. Bolam,et al.  Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network , 2001, Neuroscience.

[548]  H. Kita,et al.  Down‐regulation of metabotropic glutamate receptor 1α in globus pallidus and substantia nigra of parkinsonian monkeys , 2005, The European journal of neuroscience.

[549]  L. Metman,et al.  Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson's disease , 1998, Neurology.

[550]  Á. Pazos,et al.  5-HT1B receptor binding in degenerative movement disorders , 1998, Brain Research.

[551]  S. Bressman,et al.  Genetics and treatment of dystonia. , 2009, Neurologic clinics.

[552]  K. Clark,et al.  The role of the subthalamic nucleus in the response of globus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in rats , 2004, Experimental Brain Research.

[553]  P. Bonaventure,et al.  Detailed mapping of serotonin 5-HT1B and 5-HT1D receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function , 1997, Neuroscience.

[554]  J. Palacios,et al.  Visualization of a dopamine D1 receptor mRNA in human and rat brain. , 1991, Brain research. Molecular brain research.

[555]  A. MacAskill,et al.  Subcellular connectivity underlies pathway-specific signaling in the nucleus accumbens , 2012, Nature Neuroscience.

[556]  P. Headley,et al.  NMDA receptor antagonists as analgesics: focus on the NR2B subtype. , 2001, Trends in pharmacological sciences.

[557]  B Bioulac,et al.  Ratio of inhibited-to-activated pallidal neurons decreases dramatically during passive limb movement in the MPTP-treated monkey. , 2000, Journal of neurophysiology.

[558]  K. Neve,et al.  Extrastriatal dopamine D2 receptors: distribution, pharmacological characterization and region-specific regulation by clozapine. , 1992, The Journal of pharmacology and experimental therapeutics.

[559]  H. Bernheimer Distribution of Homovanillic Acid in the Human Brain , 1964, Nature.

[560]  A. Parent,et al.  The Nigrostriatal Pathway in the Rat: A Single-Axon Study of the Relationship between Dorsal and Ventral Tier Nigral Neurons and the Striosome/Matrix Striatal Compartments , 2001, The Journal of Neuroscience.

[561]  J. Dostrovsky,et al.  Differential neuronal activity in segments of globus pallidus in Parkinson's disease patients , 1994, Neuroreport.

[562]  Bettina C. Schwab,et al.  Synchrony in Parkinson's disease: importance of intrinsic properties of the external globus pallidus , 2013, Front. Syst. Neurosci..

[563]  Differential role of GABAA and GABAB receptors in two distinct output stations of the rat striatum: studies on the substantia nigra pars reticulata and the globus pallidus , 2010, Neuroscience.

[564]  B. Bean,et al.  Subthreshold Sodium Currents and Pacemaking of Subthalamic Neurons Modulation by Slow Inactivation , 2003, Neuron.

[565]  T. Wichmann,et al.  Localization and function of GABA transporters in the globus pallidus of parkinsonian monkeys , 2010, Experimental Neurology.

[566]  J. Thibault,et al.  Ultrastructural morphology of dopaminergic nerve terminals and synapses in the striatum of the rat using tyrosine hydroxylase immunocytochemistry: A topographical study , 1984, Brain Research Bulletin.

[567]  J. Palacios,et al.  Visualization of dopamine D1, D2 and D3 receptor mRNA's in human and rat brain , 1992, Neurochemistry International.

[568]  Peter Brown,et al.  Parkinsonian Beta Oscillations in the External Globus Pallidus and Their Relationship with Subthalamic Nucleus Activity , 2008, The Journal of Neuroscience.

[569]  Todor V. Gerdjikov,et al.  A Major External Source of Cholinergic Innervation of the Striatum and Nucleus Accumbens Originates in the Brainstem , 2014, The Journal of Neuroscience.

[570]  Philip A. Starr,et al.  Single unit “pauser” characteristics of the globus pallidus pars externa distinguish primary dystonia from secondary dystonia and Parkinson's disease , 2009, Experimental Neurology.

[571]  T. Powell,et al.  The structure of the caudate nucleus of the cat: light and electron microscopy. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[572]  P. Somogyi,et al.  The gamma 2 subunit of the GABAA receptor is concentrated in synaptic junctions containing the alpha 1 and beta 2/3 subunits in hippocampus, cerebellum and globus pallidus. , 1996, Neuropharmacology.

[573]  A. Levey,et al.  D1 and D2 dopamine receptor mRNA in rat brain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[574]  J. Bolam,et al.  A Single-Cell Analysis of Intrinsic Connectivity in the Rat Globus Pallidus , 2007, The Journal of Neuroscience.

[575]  M. Nedergaard,et al.  Artifact versus reality—How astrocytes contribute to synaptic events , 2012, Glia.

[576]  J. Isaacson,et al.  Odor representations in mammalian cortical circuits , 2010, Current Opinion in Neurobiology.

[577]  J. Benson,et al.  The GABAA receptors. From subunits to diverse functions. , 1996, Ion channels.

[578]  A. Graybiel The Basal Ganglia and Chunking of Action Repertoires , 1998, Neurobiology of Learning and Memory.

[579]  Thomas Wichmann,et al.  Deep brain stimulation for movement and other neurologic disorders , 2012, Annals of the New York Academy of Sciences.

[580]  Bernhard A. Kaplan,et al.  SYSTEMS NEUROSCIENCE ORIGINAL RESEARCH ARTICLE , 2011 .

[581]  J. Marshall,et al.  Glutamic Acid Decarboxylase 67 mRNA Regulation in Two Globus Pallidus Neuron Populations by Dopamine and the Subthalamic Nucleus , 2004, The Journal of Neuroscience.

[582]  P. Calabresi,et al.  Direct and indirect pathways of basal ganglia: a critical reappraisal , 2014, Nature Neuroscience.

[583]  Alon Korngreen,et al.  Electrophysiological Characteristics of Globus Pallidus Neurons , 2010, PloS one.

[584]  W. Yung,et al.  Rotational behavior and electrophysiological effects induced by GABAB receptor activation in rat globus pallidus , 2002, Neuroscience.

[585]  J. Joyce,et al.  Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons , 1999, Neuropsychopharmacology.

[586]  D. Kullmann,et al.  Tonically active GABAA receptors: modulating gain and maintaining the tone , 2004, Trends in Neurosciences.

[587]  G. M. Peterson,et al.  Anterograde and retrograde axonal transport of Phaseolus vulgaris leucoagglutinin (PHA-L) from the globus pallidus to the striatum of the rat , 1988, Journal of Neuroscience Methods.

[588]  A. Parent,et al.  Projection from the external pallidum to the reticular thalamic nucleus in the squirrel monkey , 1991, Brain Research.

[589]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato‐pallidal complex , 1984, The Journal of comparative neurology.

[590]  P Pasik,et al.  A Golgi and ultrastructural study of the monkey globus pallidus , 1982, The Journal of comparative neurology.

[591]  D. Oorschot Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods , 1996, The Journal of comparative neurology.

[592]  B Bioulac,et al.  Effects of l-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey , 1998, Brain Research.

[593]  H. Steinbusch,et al.  Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington's disease , 2006, Neuroscience Letters.

[594]  T. Wichmann,et al.  Extrastriatal D2-like receptors modulate basal ganglia pathways in normal and Parkinsonian monkeys. , 2012, Journal of neurophysiology.

[595]  M. Starr,et al.  Stimulation of basal and l-DOPA-induced motor activity by glutamate antagonists in animal models of Parkinson's disease , 1997, Neuroscience & Biobehavioral Reviews.

[596]  Robert M. Kessler,et al.  Identification of extrastriatal dopamine D2 receptors in post mortem human brain with [125I]epidepride , 1993, Brain Research.

[597]  Rafal Bogacz,et al.  Distinct Developmental Origins Manifest in the Specialized Encoding of Movement by Adult Neurons of the External Globus Pallidus , 2015, Neuron.

[598]  H. Bergman,et al.  Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. , 1990, Science.

[599]  H. Kita,et al.  The morphology of globus pallidus projection neurons in the rat: an intracellular staining study , 1994, Brain Research.

[600]  D James Surmeier,et al.  Nav1.6 Sodium Channels Are Critical to Pacemaking and Fast Spiking in Globus Pallidus Neurons , 2007, The Journal of Neuroscience.

[601]  D James Surmeier,et al.  Enhancement of Excitatory Synaptic Integration by GABAergic Inhibition in the Subthalamic Nucleus , 2005, The Journal of Neuroscience.

[602]  D. Standaert,et al.  Immunohistochemical localization of metabotropic glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia , 1998, The Journal of comparative neurology.

[603]  Charles J. Wilson,et al.  Calcium-Activated SK Channels Influence Voltage-Gated Ion Channels to Determine the Precision of Firing in Globus Pallidus Neurons , 2009, The Journal of Neuroscience.

[604]  Hagai Bergman,et al.  Dopamine Replacement Therapy Reverses Abnormal Synchronization of Pallidal Neurons in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Primate Model of Parkinsonism , 2002, The Journal of Neuroscience.

[605]  T. Wichmann,et al.  Localization and Function of GABA Transporters GAT-1 and GAT-3 in the Basal Ganglia , 2011, Front. Syst. Neurosci..

[606]  R. Mostany,et al.  Autoradiographic characterisation of [35S]GTPγS binding stimulation mediated by 5-HT1B receptor in postmortem human brain , 2005, Neuropharmacology.

[607]  M. Barrot The ventral tegmentum and dopamine: A new wave of diversity , 2014, Neuroscience.

[608]  Anatol C. Kreitzer,et al.  Distinct Roles of GABAergic Interneurons in the Regulation of Striatal Output Pathways , 2010, The Journal of Neuroscience.

[609]  H. Fibiger,et al.  Demonstration of a pallidostriatal pathway by retrograde transport of HRP-labeled lectin , 1981, Brain Research.

[610]  F. Horak,et al.  Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. , 1985, Journal of neurophysiology.

[611]  Kuldeep Shetty,et al.  Deep brain stimulation for movement disorders , 2018, Neurology India.

[612]  S. Norton Hyperactive behavior of rats after lesions of the globus pallidus , 1976, Brain Research Bulletin.

[613]  Y. Smith,et al.  Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus , 2005, Neuropharmacology.

[614]  R. Glennon,et al.  Autoradiographic characterization of (+-)-1-(2,5-dimethoxy-4-[125I] iodophenyl)-2-aminopropane ([125I]DOI) binding to 5-HT2 and 5-HT1c receptors in rat brain. , 1990, The Journal of pharmacology and experimental therapeutics.

[615]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.