Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets.

Vertically oriented graphene (VG) nanosheets have attracted growing interest for a wide range of applications, from energy storage, catalysis and field emission to gas sensing, due to their unique orientation, exposed sharp edges, non-stacking morphology, and huge surface-to-volume ratio. Plasma-enhanced chemical vapor deposition (PECVD) has emerged as a key method for VG synthesis; however, controllable growth of VG with desirable characteristics for specific applications remains a challenge. This paper attempts to summarize the state-of-the-art research on PECVD growth of VG nanosheets to provide guidelines on the design of plasma sources and operation parameters, and to offer a perspective on outstanding challenges that need to be overcome to enable commercial applications of VG. The review starts with an overview of various types of existing PECVD processes for VG growth, and then moves on to research on the influences of feedstock gas, temperature, and pressure on VG growth, substrate pretreatment, the growth of VG patterns on planar substrates, and VG growth on cylindrical and carbon nanotube (CNT) substrates. The review ends with a discussion on challenges and future directions for PECVD growth of VG.

[1]  Masaru Hori,et al.  Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition , 2005 .

[2]  Sarnjeet S. Dhesi,et al.  Catalyst‐Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes , 2008 .

[3]  I. Lin,et al.  Electron field emission properties of carbon nanoflakes prepared by RF sputtering , 2010 .

[4]  Jun Li,et al.  Preparation of Nucleic Acid Functionalized Carbon Nanotube Arrays , 2002 .

[5]  P. Ajayan,et al.  Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite , 1994, Science.

[6]  M. Hori,et al.  Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition , 2008 .

[7]  M. Hori,et al.  Radical-controlled plasma processing for nanofabrication , 2011 .

[8]  SonBinh T. Nguyen,et al.  Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets , 2008 .

[9]  E. Wang,et al.  Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth , 2003 .

[10]  H. Sugai,et al.  Transition of electron heating mode in a planar microwave discharge at low pressures , 2000 .

[11]  Pascal Chabert,et al.  Physics of radio-frequency plasmas , 2011 .

[12]  Brian C. Holloway,et al.  Free-standing subnanometer graphite sheets , 2004 .

[13]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[14]  M. Hori,et al.  Fabrication of carbon nanowalls using electron beam excited plasma-enhanced chemical vapor deposition , 2008 .

[15]  Zexiang Shen,et al.  Carbon nanowalls and related materials , 2004 .

[16]  G. Mcguire,et al.  Back-gated milliampere-class field emission device based on carbon nanosheets , 2006 .

[17]  Alexander N. Obraztsov,et al.  DC discharge plasma studies for nanostructured carbon CVD , 2003 .

[18]  Hui Tian,et al.  Carbon nanosheets as the electrode material in supercapacitors , 2009 .

[19]  Y. Cho,et al.  Note: an underwater multi-channel plasma array for water sterilization. , 2011, The Review of scientific instruments.

[20]  Shun Mao,et al.  Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition , 2011 .

[21]  Masaru Hori,et al.  Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection , 2004 .

[22]  C. Guarnieri,et al.  Langmuir probe measurements of a radio frequency induction plasma , 1993 .

[23]  Hirotaka Toyoda,et al.  High performance of carbon nanowall supported Pt catalyst for methanol electro-oxidation , 2012 .

[24]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[25]  A. Chuang,et al.  Synthesis and electrical characterization of n-type carbon nanowalls , 2009 .

[26]  M. Hori,et al.  Electrical conduction control of carbon nanowalls , 2008 .

[27]  K. Chattopadhyay,et al.  Diamond synthesis by capacitively coupled radio frequency plasma with the addition of direct current power , 1995 .

[28]  M. Hori,et al.  Electron field emission enhancement of carbon nanowalls by plasma surface nitridation , 2011 .

[29]  D. Manos,et al.  High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices , 2006 .

[30]  M. A. Timofeyev,et al.  Nanocrystalline graphite: Promising material for high current field emission cathodes , 2010 .

[31]  A. Obraztsov,et al.  Chemical vapor deposition of thin graphite films of nanometer thickness , 2007 .

[32]  Jeffrey Hopwood,et al.  Review of inductively coupled plasmas for plasma processing , 1992 .

[33]  Zhipeng Wang,et al.  Carbon nanosheets by microwave plasma enhanced chemical vapor deposition in CH4–Ar system , 2011 .

[34]  D. Manos,et al.  Uniform and enhanced field emission from chromium oxide coated carbon nanosheets , 2008 .

[35]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[36]  J. Tour,et al.  Toward the synthesis of wafer-scale single-crystal graphene on copper foils. , 2012, ACS nano.

[37]  Michael L. Simpson,et al.  Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly , 2005 .

[38]  G. Simon,et al.  Preparation of graphene nanowalls by a simple microwave-based method , 2010 .

[39]  M. Nagatsu,et al.  Mode identification of surface waves excited in a planar microwave discharge , 1997 .

[40]  T. Itoh,et al.  Preparation of Carbon Nanowall by Hot-Wire Chemical Vapor Deposition and Effects of Substrate Heating Temperature and Filament Temperature , 2008 .

[41]  K. Nishimura,et al.  Characterization and surface modification of carbon nanowalls , 2010 .

[42]  M. Ghoranneviss,et al.  Growth of Carbon Nanowalls by Thermal CVD on Magnetron Sputtered Fe Thin Film , 2011 .

[43]  Gmw Gerrit Kroesen,et al.  The energy balance at substrate surfaces during plasma processing , 2001 .

[44]  M. Verbrugge,et al.  Vertically aligned graphene electrode for lithium ion battery with high rate capability , 2011 .

[45]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[46]  N. Shang,et al.  Radial textured carbon nanoflake spherules , 2006 .

[47]  A. Fridman,et al.  Plasma Physics and Engineering , 2021 .

[48]  J. Flege,et al.  Epitaxial graphene on ruthenium. , 2008, Nature materials.

[49]  Yihong Wu,et al.  Electrochemical Synthesis and Characterization of Magnetic Nanoparticles on Carbon Nanowall Templates , 2002 .

[50]  Dieter M. Gruen,et al.  NANOCRYSTALLINE DIAMOND FILMS1 , 1999 .

[51]  K. Kojima,et al.  Grazing incidence X-ray diffraction study on carbon nanowalls , 2009 .

[52]  Shun Mao,et al.  Carbon Nanotube with Chemically Bonded Graphene Leaves for Electronic and Optoelectronic Applications , 2011 .

[53]  S. Pei,et al.  Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. , 2010, Nature materials.

[54]  K. Teii,et al.  Effect of enhanced C2 growth chemistry on nanodiamond film deposition , 2007 .

[55]  Y. Ando,et al.  Production of petal-like graphite sheets by hydrogen arc discharge , 1997 .

[56]  Yihong Wu,et al.  Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications , 2010 .

[57]  S. Vizireanu,et al.  Combined growth of carbon nanotubes and carbon nanowalls by plasma-enhanced chemical vapor deposition , 2007 .

[58]  Yang Yang,et al.  Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. , 2009, Nano letters.

[59]  Jingqiu Liang,et al.  Preparation of carbon nanosheets deposited on carbon nanotubes by microwave plasma-enhanced chemical vapor deposition method , 2008 .

[60]  C. Geddes,et al.  Plasmonics , 2018, An Introduction to Metamaterials and Nanophotonics.

[61]  E. .. Mittemeijer,et al.  The solubility of C in solid Cu , 2004 .

[62]  J. Gilman,et al.  Nanotechnology , 2001 .

[63]  H. Becker,et al.  Carbon nanowalls deposited by inductively coupled plasma enhanced chemical vapor deposition using aluminum acetylacetonate as precursor , 2011 .

[64]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[65]  E. Cappelli,et al.  Nano-structured oriented carbon films grown by PLD and CVD methods , 2004 .

[66]  N. Soin,et al.  Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation , 2011 .

[67]  S. Vizireanu,et al.  Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma , 2010 .

[68]  J. Glass,et al.  Three-dimensional arrays of graphenated carbon nanotubes , 2012 .

[69]  T. Michely,et al.  Structural coherency of graphene on Ir(111). , 2008, Nano letters.

[70]  C. Yeh,et al.  Field emission from carbon nanosheets on pyramidal Si(100) , 2007 .

[71]  Zhenyu Zhang,et al.  Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111). , 2011, The Journal of chemical physics.

[72]  K. Chattopadhyay,et al.  Synthesis of amorphous carbon nanowalls by DC-PECVD on different substrates and study of its field emission properties , 2011 .

[73]  M. Nakashima,et al.  Low threshold field emission from nitrogen-incorporated carbon nanowalls , 2010 .

[74]  Alexander N. Obraztsov,et al.  CVD growth and field emission properties of nanostructured carbon films , 2002 .

[75]  J. Tiwari,et al.  Direct Synthesis of Vertically Interconnected 3-D Graphitic Nanosheets on Hemispherical Carbon Particles by Microwave Plasma CVD , 2011 .

[76]  M. Hiramatsu,et al.  Detection of C2 radicals in low-pressure inductively coupled plasma source for diamond chemical vapor deposition , 2001 .

[77]  N. A. Azarenkov,et al.  Inductively coupled Ar/CH₄/H₂plasmas for low-temperature deposition of ordered carbon nanostructures , 2004 .

[78]  D. Manos,et al.  A mechanism for carbon nanosheet formation , 2007 .

[79]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[80]  Masa-aki Suzuki,et al.  Synthesis of carbon nanowalls by plasma-enhanced chemical vapor deposition in a CO/H2 microwave discharge system , 2011 .

[81]  P. Ajayan,et al.  Ultrathin planar graphene supercapacitors. , 2011, Nano letters.

[82]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[83]  Masaru Hori,et al.  Initial growth process of carbon nanowalls synthesized by radical injection plasma-enhanced chemical vapor deposition , 2009 .

[84]  First-Principles Thermodynamics of Graphene Growth on Cu Surfaces , 2011, 1101.3851.

[85]  J. McVittie,et al.  A tuned Langmuir probe for measurements in rf glow discharges , 1990 .

[86]  Tow Chong Chong,et al.  Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition , 2002 .

[87]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[88]  T. Kyotani,et al.  Comparison of structural parameters of PF carbon from XRD and HRTEM techniques , 2000 .

[89]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[90]  W. I. Milne,et al.  Carbon nanotubes by plasma-enhanced chemical vapor deposition , 2006 .

[91]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[92]  M. D'Olieslaeger,et al.  Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition , 1999 .

[93]  D. Manos,et al.  Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition , 2007 .

[94]  Kobashi,et al.  Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films. , 1988, Physical review. B, Condensed matter.

[95]  W. Whang,et al.  Deposition of Carbon Nanowall Flowers on Two-Dimensional Sheet for Electrochemical Capacitor Application , 2009 .

[96]  D. Manos,et al.  Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition , 2004 .

[97]  K. Teii,et al.  Control of the Growth Regimes of Nanodiamond and Nanographite in Microwave Plasmas , 2012, IEEE Transactions on Plasma Science.

[98]  Kenichi Kojima,et al.  Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition , 2005 .

[99]  N. Lisi,et al.  Electrochemical properties of carbon nanowalls synthesized by HF-CVD , 2007 .

[100]  C. Oshima,et al.  REVIEW ARTICLE: Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces , 1997 .

[101]  C. Pham‐Huu,et al.  Macronized aligned carbon nanotubes for use as catalyst support and ceramic nanoporous membrane template , 2009 .

[102]  Nikolay V. Suetin,et al.  Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge , 2012 .

[103]  C. Pham‐Huu,et al.  Structured silica reactor with aligned carbon nanotubes as catalyst support for liquid-phase reaction , 2007 .

[104]  Ado Jorio,et al.  General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy , 2006 .

[105]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[106]  N. Suetin,et al.  Influence of the growth temperature on structural and electron field emission properties of carbon nanowall/nanotube films synthesized by catalyst-free PECVD , 2012 .

[107]  Wenyi Zhu,et al.  Effects of noble gases on diamond deposition from methane‐hydrogen microwave plasmas , 1990 .

[108]  S. T. Lee,et al.  Uniform carbon nanoflake films and their field emissions , 2002 .

[109]  Toshiaki Kato,et al.  Fast Growth of Carbon Nanowalls from Pure Methane using Helicon Plasma-Enhanced Chemical Vapor Deposition , 2006 .

[110]  B. Holloway,et al.  Structural characterization of carbon nanosheets via x-ray scattering , 2005 .

[111]  Y. Feng,et al.  Raman spectroscopic investigation of carbon nanowalls. , 2006, The Journal of chemical physics.

[112]  Kehan Yu,et al.  Straightforward fabrication of a highly branched graphene nanosheet array for a Li-ion battery anode , 2012 .

[113]  R. Ruoff,et al.  Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication , 2011, Nanoscale research letters.

[114]  A. Murphy,et al.  Plasma nanoscience: setting directions, tackling grand challenges , 2011 .

[115]  M. Chhowalla,et al.  A review of chemical vapour deposition of graphene on copper , 2011 .

[116]  W. Shih,et al.  Fabrication of carbon nanoflakes by RF sputtering for field emission applications , 2010 .

[117]  N. Soin,et al.  Exploring the fundamental effects of deposition time on the microstructure of graphene nanoflakes by Raman scattering and X-ray diffraction , 2011 .

[118]  M. B. Assouar,et al.  Growth and characterisation of carbon nanostructures obtained by MPACVD system using CH4/CO2 gas mixture , 2006 .

[119]  G. Cheng,et al.  Vapor-solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission. , 2012, ACS nano.

[120]  T. Itoh,et al.  Effect of hydrogen dilution in preparation of carbon nanowall by hot-wire CVD , 2008 .

[121]  Masaru Hori,et al.  Development of measurement technique for carbon atoms employing vacuum ultraviolet absorption spectroscopy with a microdischarge hollow-cathode lamp and its application to diagnostics of nanographene sheet material formation plasmas , 2009 .

[122]  J. Lawler,et al.  C2 column densities in H2/Ar/CH4 microwave plasmas , 1998 .

[123]  E. Saiz,et al.  Activation energy paths for graphene nucleation and growth on Cu. , 2012, ACS nano.

[124]  Matthew E. Berck,et al.  Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure , 2011 .

[125]  Shun Mao,et al.  Vertically oriented graphene sheets grown on metallic wires for greener corona discharges: lower power consumption and minimized ozone emission , 2011 .

[126]  K. Kojima,et al.  Lithium insertion behavior of carbon nanowalls by dc plasma CVD and its heat-treatment effect , 2009 .

[127]  M. Mori,et al.  Carbon nanowalls as platinum support for fuel cells , 2011 .

[128]  M. Hori,et al.  Measurement of C2 radical density in microwave methane/hydrogen plasma used for nanocrystalline diamond film formation , 2003 .

[129]  D. Manos,et al.  Enhanced field emission of vertically oriented carbon nanosheets synthesized by C2H2/H2 plasma enhanced CVD , 2011 .

[130]  John R. Miller,et al.  A high density of vertically-oriented graphenes for use in electric double layer capacitors , 2012 .

[131]  Junhong Chen,et al.  Hierarchical vertically oriented graphene as a catalytic counter electrode in dye-sensitized solar cells , 2013 .

[132]  S. Kodambaka,et al.  Growth of semiconducting graphene on palladium. , 2009, Nano letters.

[133]  B. Purna Chandra Rao,et al.  Low Temperature Growth of Carbon Nanostructures by Radio Frequency‐Plasma Enhanced Chemical Vapor Deposition (Low Temperature Growth of Carbon Nanostructures by RF‐PECVD) , 2009 .

[134]  G. Lu,et al.  One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal , 2012 .

[135]  A. V. Phelps,et al.  Measurement of free-free emission from low-energy-electron collisions with Ar , 1983 .

[136]  Koen Schouteden,et al.  Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition , 2008, Nanotechnology.

[137]  Yihong Wu,et al.  Effects of Localized Electric Field on the Growth of Carbon Nanowalls , 2002 .

[138]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[139]  N. Xu,et al.  Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology , 2012, Nanotechnology.

[140]  Shun Mao,et al.  Note: Continuous synthesis of uniform vertical graphene on cylindrical surfaces. , 2011, The Review of scientific instruments.

[141]  A. Ohl Plasma‐Aided Nanofabrication , 2008 .

[142]  O. Zhou,et al.  Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition , 2000 .

[143]  Young I Cho,et al.  Application of pulsed spark discharge for calcium carbonate precipitation in hard water. , 2010, Water research.

[144]  X. Bonnin,et al.  Microwave analysis of PACVD diamond deposition reactor based on electromagnetic modelling , 2010 .

[145]  H. Sasaoka,et al.  Thermal desorption and its effects on field emission properties of carbon nanowalls , 2010 .

[146]  F. Paschen,et al.  Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz , 1889 .

[147]  Yihong Wu,et al.  Fabrication of a Class of Nanostructured Materials Using Carbon Nanowalls as the Templates , 2002 .

[148]  Guanzhong Wang,et al.  Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. , 2012, Journal of the American Chemical Society.

[149]  Zhong Lin Wang,et al.  Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. , 2004, Nano letters.

[150]  A. Chuang,et al.  Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition , 2006 .

[151]  G. Lu,et al.  Patterning Vertically Oriented Graphene Sheets for Nanodevice Applications , 2011 .

[152]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[153]  N. Lisi,et al.  DC plasma enhanced growth of oriented carbon nanowall films by HFCVD , 2007 .