Recombinant Adeno-Associated Virus-Mediated Delivery of MicroRNA-21-3p Lowers Hypertension.

[1]  E. V. Van Bockstaele,et al.  Elastin insufficiency causes hypertension, structural defects and abnormal remodeling of renal vascular signaling. , 2017, Kidney international.

[2]  K. Boini,et al.  Inhibition of microRNA-429 in the renal medulla increased salt sensitivity of blood pressure in Sprague Dawley rats , 2017, Journal of hypertension.

[3]  Chao Liu,et al.  Inhibition of Aberrant MicroRNA-133a Expression in Endothelial Cells by Statin Prevents Endothelial Dysfunction by Targeting GTP Cyclohydrolase 1 in Vivo , 2016, Circulation.

[4]  D. Zheng,et al.  MicroRNA-153 targeting of KCNQ4 contributes to vascular dysfunction in hypertension , 2016, Cardiovascular research.

[5]  Y. Takashima,et al.  Suppression of lethal‐7b and miR‐125a/b Maturation by Lin28b Enables Maintenance of Stem Cell Properties in Hepatoblasts , 2016, Hepatology.

[6]  I. Xenarios,et al.  Identification of a novel PPARβ/δ/miR‐21‐3p axis in UV‐induced skin inflammation , 2016, EMBO molecular medicine.

[7]  A. Riggs,et al.  The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model , 2016, Nature Communications.

[8]  K. Moore,et al.  MicroRNA Regulation of Atherosclerosis. , 2016, Circulation research.

[9]  Thomas Thum,et al.  New Insights Into miR-17-92 Cluster Regulation and Angiogenesis. , 2016, Circulation research.

[10]  E. Vigorito,et al.  MicroRNA-155 controls affinity-based selection by protecting c-MYC+ B cells from apoptosis. , 2016, The Journal of clinical investigation.

[11]  Lubo Zhang,et al.  Mechanisms and therapeutic potential of microRNAs in hypertension. , 2015, Drug discovery today.

[12]  B. Zhao,et al.  E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1 , 2015, Nature Communications.

[13]  Shenming Wang,et al.  An Endocrine Genetic Signal Between Blood Cells and Vascular Smooth Muscle Cells: Role of MicroRNA-223 in Smooth Muscle Function and Atherogenesis. , 2015, Journal of the American College of Cardiology.

[14]  Jagmeet P. Singh,et al.  Circulating MicroRNA-30d Is Associated With Response to Cardiac Resynchronization Therapy in Heart Failure and Regulates Cardiomyocyte Apoptosis: A Translational Pilot Study , 2015, Circulation.

[15]  C. Hodgkinson,et al.  MicroRNAs and Cardiac Regeneration. , 2015, Circulation research.

[16]  A. Danser,et al.  Hypertension Renin–Angiotensin–Aldosterone System Alterations , 2015 .

[17]  W. Gong,et al.  miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. , 2015, Cardiovascular research.

[18]  Jing-cheng Li,et al.  The role of TRPV1 in improving VSMC function and attenuating hypertension. , 2015, Progress in biophysics and molecular biology.

[19]  G. Condorelli,et al.  Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. , 2015, Circulation research.

[20]  Douglas E. Vaughan,et al.  MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis , 2016, Circulation.

[21]  D. Catalucci,et al.  MicroRNA-133 Modulates the &bgr;1-Adrenergic Receptor Transduction Cascade , 2014, Circulation research.

[22]  Alexandra Flemming Heart Failure: Targeting miRNA pathology in heart disease , 2014, Nature Reviews Drug Discovery.

[23]  P. Doevendans,et al.  Inhibition of miR-25 Improves Cardiac Contractility in the Failing Heart , 2014, Nature.

[24]  E. van Rooij,et al.  Inhibition of MicroRNA-92a Protects Against Ischemia/Reperfusion Injury in a Large-Animal Model , 2013, Circulation.

[25]  D. Zeldin,et al.  Indapamide Lowers Blood Pressure by Increasing Production of Epoxyeicosatrienoic Acids in the Kidney , 2013, Molecular Pharmacology.

[26]  L. Zentilin,et al.  MiR-378 Controls Cardiac Hypertrophy by Combined Repression of Mitogen-Activated Protein Kinase Pathway Factors , 2013, Circulation.

[27]  G. Dibona Sympathetic nervous system and hypertension. , 2013, Hypertension.

[28]  E. Olson,et al.  MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles , 2012, Nature Reviews Drug Discovery.

[29]  W. Park,et al.  A statin-regulated microRNA represses human c-Myc expression and function , 2012, EMBO molecular medicine.

[30]  W. Elliott,et al.  What is the prevalence of resistant hypertension in the United States? , 2012, Current opinion in cardiology.

[31]  Gianfranco Parati,et al.  The human sympathetic nervous system: its relevance in hypertension and heart failure. , 2012, European heart journal.

[32]  J. Afonso,et al.  Adrenal α2-adrenergic receptors in the aging normotensive and spontaneously hypertensive rat , 2012, Neurobiology of Aging.

[33]  Albert-László Barabási,et al.  MicroRNA-21 Integrates Pathogenic Signaling to Control Pulmonary Hypertension: Results of a Network Bioinformatics Approach , 2012, Circulation.

[34]  Stefan L Ameres,et al.  Long-term, efficient inhibition of microRNA function in mice using rAAV vectors , 2012, Nature Methods.

[35]  D. Catalucci,et al.  MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo , 2011, Circulation research.

[36]  B. Egan,et al.  Uncontrolled and Apparent Treatment Resistant Hypertension in the United States, 1988 to 2008 , 2011, Circulation.

[37]  T. Tuschl,et al.  MicroRNA-24 Regulates Vascularity After Myocardial Infarction , 2011, Circulation.

[38]  Stephen D. Persell Prevalence of Resistant Hypertension in the United States, 2003–2008 , 2011, Hypertension.

[39]  M. Cicha,et al.  Impaired Interaction Between Efferent and Afferent Renal Nerve Activity in SHR Involves Increased Activation of &agr;2-Adrenoceptors , 2011, Hypertension.

[40]  Doron Betel,et al.  Widespread regulatory activity of vertebrate microRNA* species. , 2011, RNA.

[41]  M. Farace,et al.  NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells , 2011, Nucleic acids research.

[42]  Sam Griffiths-Jones,et al.  MicroRNA evolution by arm switching , 2011, EMBO reports.

[43]  L. Pfeffer,et al.  Cancer esearch apeutics , Targets , and Chemical Biology Induces miR-21 through a Signal Transducer and ivator of Transcription 3 – Dependent Pathway as a R pressive Negative Feedback on IFN-Induced Apoptosis , 2010 .

[44]  E. Olson,et al.  MicroRNAs add a new dimension to cardiovascular disease. , 2010, Circulation.

[45]  R. Gregory,et al.  Many roads to maturity: microRNA biogenesis pathways and their regulation , 2009, Nature Cell Biology.

[46]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[47]  R. Deane,et al.  SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells , 2009, Nature Cell Biology.

[48]  E. Olson,et al.  Toward microRNA-based therapeutics for heart disease: the sense in antisense. , 2008, Circulation research.

[49]  Jeffrey E. Thatcher,et al.  Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis , 2008, Proceedings of the National Academy of Sciences.

[50]  B. Lévy,et al.  Hypertension and microvascular remodelling. , 2008, Cardiovascular research.

[51]  H. Hermeking p53 enters the microRNA world. , 2007, Cancer cell.

[52]  Wei Yan,et al.  Tissue-dependent paired expression of miRNAs , 2007, Nucleic acids research.

[53]  H. Gavras,et al.  Long-term inhibition of the central alpha(2B)-adrenergic receptor gene via recombinant AAV-delivered antisense in hypertensive rats. , 2006, American journal of hypertension.

[54]  R. Touyz,et al.  Redox signaling in hypertension. , 2006, Cardiovascular research.

[55]  O. McDonald,et al.  Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. , 2005, The Journal of clinical investigation.

[56]  Xiao Xiao,et al.  Long-term modifications of blood pressure in normotensive and spontaneously hypertensive rats by gene delivery of rAAV-mediated cytochrome P450 arachidonic acid hydroxylase , 2005, Cell Research.

[57]  G. Owens,et al.  Molecular regulation of vascular smooth muscle cell differentiation in development and disease. , 2004, Physiological reviews.

[58]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[59]  H. Gavras,et al.  Effects of Antisense Oligodeoxynucleotide Targeting of the &agr;2B-Adrenergic Receptor Messenger RNA in the Central Nervous System , 2001, Hypertension.

[60]  Ernesto L. Schiffrin,et al.  Vascular Remodeling in Hypertension: Roles of Apoptosis, Inflammation, and Fibrosis , 2001, Hypertension.

[61]  H. Gavras,et al.  Role of alpha(2)-adrenergic receptor subtypes in the acute hypertensive response to hypertonic saline infusion in anephric mice. , 2000, HYPERTENSION.

[62]  R. Samulski,et al.  Production of High-Titer Recombinant Adeno-Associated Virus Vectors in the Absence of Helper Adenovirus , 1998, Journal of Virology.

[63]  P. Molinoff,et al.  International Union of Pharmacology nomenclature of adrenoceptors. , 1994, Pharmacological reviews.

[64]  Chenchen,et al.  MicroRNA-21 Lowers Blood Pressure in Spontaneous Hypertensive Rats by Upregulating Mitochondrial Translation , 2016 .

[65]  I. Xenarios,et al.  Identification of a novel PPAR b / d / miR-21-3 p axis in UV-induced skin inflammation , 2016 .

[66]  W. Elliott Uncontrolled and Apparent Treatment Resistant Hypertension in the United States, 1988 to 2008 , 2012 .

[67]  H. Iwao,et al.  [Vascular remodeling]. , 2000, Nihon rinsho. Japanese journal of clinical medicine.