Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology

We now appreciate the fruit of decades of development in the independent fields of ultrasensitive spectroscopy, ultrastable lasers, ultrafast lasers, and nonlinear optics. But a new feature of the past two or three years is the explosion of interconnectedness between these fields, opening remarkable and unexpected progress in each, due to advances in the other fields. For brevity, we here focus mainly on the new possibilities in the field of optical frequency measurement.

[1]  H. Walther,et al.  Magneto-optical trapping of silver atoms , 2000 .

[2]  Theodor W. Hänsch,et al.  Absolute Optical Frequency Measurement of the Cesium D 1 Line with a Mode-Locked Laser , 1999 .

[3]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[4]  Theodor W. Hänsch,et al.  HYDROGEN-DEUTERIUM 1S-2S ISOTOPE SHIFT AND THE STRUCTURE OF THE DEUTERON , 1998 .

[5]  C W Oates,et al.  Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. , 2001, Physical review letters.

[6]  Jun Ishikawa,et al.  Frequency comparison of 127I2-stabilized Nd: YAG lasers , 1998, IEEE Trans. Instrum. Meas..

[7]  Wolfgang Ertmer,et al.  Sub-Kilohertz Optical Spectroscopy with a Time Domain Atom Interferometer , 1998 .

[8]  J. L. Hall,et al.  Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb. , 2000, Optics letters.

[9]  Ferenc Krausz,et al.  Femtosecond solid-state lasers , 1992 .

[10]  Theodor W. Hänsch,et al.  High-Resolution Two-Photon Spectroscopy with Picosecond Light Pulses , 1978 .

[11]  John L. Hall,et al.  The laser absolute wavelength standard problem , 1968 .

[12]  John L. Hall,et al.  Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach , 1976 .

[13]  Y. Awaji,et al.  Accurate optical frequency atlas of the 1.5-µm bands of acetylene , 1996 .

[14]  Measuring the fine structure constant using helium fine structure , 1995 .

[15]  E. A. Curtis,et al.  Improved short-term stability of optical frequency standards: approaching 1 Hz in 1 s with the Ca standard at 657 nm. , 2000, Optics letters.

[16]  K. Evenson,et al.  Optical frequency measurements , 1986, Proceedings of the IEEE.

[17]  M M Murnane,et al.  Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser. , 1993, Optics letters.

[18]  D Meschede,et al.  Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies. , 1990, Optics letters.

[19]  A. Stentz,et al.  Optical properties of high-delta air silica microstructure optical fibers. , 2000, Optics letters.

[20]  Jun Ye,et al.  Absolute frequency measurement of the iodine-stabilized He-Ne laser at 633 nm , 2001 .

[21]  Salomon,et al.  Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock , 2000, Physical review letters.

[22]  Theodor W. Hänsch,et al.  Measuring the frequency of light with mode-locked lasers , 1999 .

[23]  Haensch,et al.  High-resolution spectroscopy of the 1S-2S transition of atomic hydrogen and deuterium. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  Dale G. Fried,et al.  Cold collision frequency shift of the 1S-2S transition in hydrogen , 1998, physics/9809016.

[25]  Jun Ye,et al.  Frequency Comparison of I-Stabilized Nd : YAG Lasers , 1999 .

[26]  Jun Ye,et al.  Absolute frequency atlas of molecular I2 lines at 532 nm , 1999, IEEE Trans. Instrum. Meas..

[27]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[28]  J. Gordon,et al.  Negative dispersion using pairs of prisms. , 1984, Optics letters.

[29]  Feng-Lei Hong,et al.  Stabilization and frequency measurement of the I2-stabilized Nd: YAG laser , 1998, IEEE Trans. Instrum. Meas..

[30]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[31]  J. L. Hall,et al.  Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies. , 2000, Optics letters.

[32]  David J. Jones,et al.  Stabilizing and measuring optical frequencies , 1999 .

[33]  David J. Wineland,et al.  Laser-Cooled Mercury Ion Frequency Standard , 1998 .

[34]  Jun Ye,et al.  Frequency comparison of (127)I2-stabilized Nd:YAG lasers , 1999 .

[35]  Tetsuya Ido,et al.  Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature , 1999 .

[36]  Jun Ye,et al.  Optical Frequency Synthesis Based on Mode- Locked Lasers , 2001 .

[37]  Jun Ye,et al.  Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy , 1998 .

[38]  Patrick Gill,et al.  Observation of an Electric Octupole Transition in a Single Ion , 1997 .

[39]  C. Daussy,et al.  Performances of OsO/sub 4/ stabilized CO/sub 2/ lasers as optical frequency standards near 29 THz , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  John L. Hall,et al.  Narrow-line Doppler cooling of strontium to the recoil limit , 1999, IEEE Trans. Instrum. Meas..

[41]  Young,et al.  Sub-dekahertz ultraviolet spectroscopy of 199Hg+ , 2000, Physical review letters.

[42]  A. S. Dychkov,et al.  Superhigh resolution spectroscopy in methane with cold molecules , 1989 .

[43]  T. J. Quinn,et al.  International Report Practical realization of the definition of the metre (1997) , 1999 .

[44]  D. Leibfried,et al.  Phase-coherent measurement of the hydrogen 1S-2S frequency with an optical frequency interval divider chain , 1996 .

[45]  John L. Hall,et al.  Direct Optical Resolution of the Recoil Effect Using Saturated Absorption Spectroscopy , 1976 .

[46]  Jun Ye,et al.  Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C 2 H 2 and C 2 HD , 1999 .

[47]  F. L. Walls,et al.  Primary Atomic Frequency Standards at NIST , 2001, Journal of research of the National Institute of Standards and Technology.

[48]  O. Poulsen,et al.  Spectroscopic investigations in 209 Bii using tunable-cw-dye-laser spectroscopy , 1978 .

[49]  F. Riehle,et al.  First phase-coherent frequency measurement of visible radiation. , 1996, Physical review letters.

[50]  J. L. Hall,et al.  Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum. , 2000, Optics letters.

[51]  Alan A. Madej,et al.  CS-BASED FREQUENCY MEASUREMENT OF A SINGLE, TRAPPED ION TRANSITION IN THE VISIBLE REGION OF THE SPECTRUM , 1999 .

[52]  J P Heritage,et al.  400-Hz mechanical scanning optical delay line. , 1993, Optics letters.

[53]  Jun Ye,et al.  High-resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers , 2000 .

[54]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[55]  Jun Ye,et al.  Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy , 2001 .