Qubit-based memcapacitors and meminductors

It is shown that superconducting charge and phase qubits are quantum versions of memory capacitive and inductive systems, respectively. We demonstrate that such quantum memcapacitive and meminductive devices offer remarkable and rich response functionalities. In particular, when subjected to periodic input, qubit-based memcapacitors and meminductors exhibit unusual hysteresis curves. Our work not only extends the set of known memcapacitive and meminductive systems to qubit-based quantum devices but also highlights their unique properties potentially useful for future technological applications.

[1]  L Roschier,et al.  Direct observation of Josephson capacitance. , 2005, Physical review letters.

[2]  M. Di Ventra,et al.  Solid-state memcapacitive system with negative and diverging capacitance , 2009, 0912.4921.

[3]  I. Mahboob,et al.  Gate-controlled electromechanical backaction induced by a quantum dot , 2016, Nature Communications.

[4]  Franco Nori,et al.  Superconducting qubits: Atomic physics with a circuit , 2008 .

[5]  M. F. Gonzalez-Zalba,et al.  Probing the limits of gate-based charge sensing , 2015, Nature Communications.

[6]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[7]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[8]  E. Solano,et al.  Quantum memristors , 2015, Scientific Reports.

[9]  G. Johansson,et al.  Readout methods and devices for Josephson-junction-based solid-state qubits , 2006, cond-mat/0602585.

[10]  Franco Nori,et al.  Delayed-response quantum back action in nanoelectromechanical systems , 2015 .

[11]  T Duty,et al.  Observation of quantum capacitance in the Cooper-pair transistor. , 2005, Physical review letters.

[12]  G. Burkard,et al.  Subharmonic transitions and Bloch-Siegert shift in electrically driven spin resonance , 2015, 1504.06081.

[13]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[14]  L. Chua Memristor-The missing circuit element , 1971 .

[15]  E. Il'ichev,et al.  Multiphoton transitions in Josephson-junction qubits (Review Article) , 2012, 1205.0696.

[16]  L. Chua Nonlinear circuit foundations for nanodevices. I. The four-element torus , 2003 .

[17]  A. Siegert,et al.  Magnetic Resonance for Nonrotating Fields , 1940 .

[18]  E. Thuneberg,et al.  Stark effect and generalized Bloch-Siegert shift in a strongly driven two-level system. , 2010, Physical review letters.

[19]  E. Solano,et al.  Quantum Memristors with Superconducting Circuits , 2016, Scientific Reports.

[20]  E. Il'ichev,et al.  Amplification and attenuation of a probe signal by doubly dressed states , 2013, 1309.2619.

[21]  Guofeng Zhang,et al.  Classical and Quantum Stochastic Models of Resistive and Memristive Circuits , 2015, 1510.08243.

[22]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[23]  Y. Makhlin,et al.  Josephson quantum bits in the flux regime , 2002 .

[24]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[25]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[26]  H.-G. Meyer,et al.  Sisyphus cooling and amplification by a superconducting qubit , 2007, 0708.0665.

[27]  Y. V. Pershin,et al.  Lagrange formalism of memory circuit elements: Classical and quantum formulations , 2012, 1201.2394.

[28]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[29]  Massimiliano Di Ventra,et al.  Superconducting Memristors , 2013, 1311.2975.

[30]  F. Nori,et al.  Landau-Zener-Stückelberg interferometry , 2009, 0911.1917.