The architecture of Rhodobacter sphaeroides chromatophores.

The chromatophores of Rhodobacter (Rb.) sphaeroides represent a minimal bio-energetic system, which efficiently converts light energy into usable chemical energy. Despite extensive studies, several issues pertaining to the morphology and molecular architecture of this elemental energy conversion system remain controversial or unknown. To tackle these issues, we combined electron microscope tomography, immuno-electron microscopy and atomic force microscopy. We found that the intracellular Rb. sphaeroides chromatophores form a continuous reticulum rather than existing as discrete vesicles. We also found that the cytochrome bc1 complex localizes to fragile chromatophore regions, which most likely constitute the tubular structures that interconnect the vesicles in the reticulum. In contrast, the peripheral light-harvesting complex 2 (LH2) is preferentially hexagonally packed within the convex vesicular regions of the membrane network. Based on these observations, we propose that the bc1 complexes are in the inter-vesicular regions and surrounded by reaction center (RC) core complexes, which in turn are bounded by arrays of peripheral antenna complexes. This arrangement affords rapid cycling of electrons between the core and bc1 complexes while maintaining efficient excitation energy transfer from LH2 domains to the RCs.

[1]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[2]  K. Gibson,et al.  Membranes of Rhodopseudomonas spheroides. I. Isolation and characterization of membrane fractions from extracts of aerobically and anaerobically grown cells. , 1972, Archives of biochemistry and biophysics.

[3]  I. Ohad,et al.  Thylakoid Membrane Remodeling during State Transitions in Arabidopsis[W] , 2008, The Plant Cell Online.

[4]  Simon Scheuring,et al.  Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum. , 2005, Journal of structural biology.

[5]  O. Medalia,et al.  Photosynthetic system in Blastochloris viridis revisited. , 2009, Biochemistry.

[6]  Lu-Ning Liu,et al.  Dimers of light‐harvesting complex 2 from Rhodobacter sphaeroides characterized in reconstituted 2D crystals with atomic force microscopy , 2008, The FEBS journal.

[7]  Klaus Schulten,et al.  Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle , 2007, Proceedings of the National Academy of Sciences.

[8]  Klaus Schulten,et al.  Photosynthetic apparatus of purple bacteria , 2002, Quarterly Reviews of Biophysics.

[9]  D. Stokes,et al.  Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles , 2010, Molecular microbiology.

[10]  D. Dawson Proceedings: International Workshop on Consumption Measures and Models for Use in Policy Development and Evaluation (Bethesda, Maryland, USA; May 12-14, 1997; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health) , 1998 .

[11]  F. Daldal,et al.  Across membrane communication between the Q(o) and Q(i) active sites of cytochrome bc(1). , 2009, Biochemistry.

[12]  Yvette Lahbib-Mansais,et al.  NEMO: a tool for analyzing gene and chromosome territory distributions from 3D-FISH experiments , 2010, Bioinform..

[13]  F. Daldal,et al.  Comparison with its mitochondrial and chloroplast counterparts , 2022 .

[14]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[15]  J. Olsen,et al.  The Organization of LH2 Complexes in Membranes from Rhodobacter sphaeroides* , 2008, Journal of Biological Chemistry.

[16]  Josep C. Pàmies,et al.  Protein shape and crowding drive domain formation and curvature in biological membranes. , 2008, Biophysical journal.

[17]  S. Scheuring,et al.  Dynamics and diffusion in photosynthetic membranes from rhodospirillum photometricum. , 2006, Biophysical journal.

[18]  K. Gibson,et al.  Membranes of Rhodopseudomonas spheroides. II. Precursor-product relations in anaerobically growing cells. , 1972, Archives of biochemistry and biophysics.

[19]  S. Scheuring,et al.  The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. , 2006, Journal of molecular biology.

[20]  Simon Scheuring,et al.  Watching the photosynthetic apparatus in native membranes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Ws. Rasband ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA , 2011 .

[22]  Aaron Kaplan,et al.  Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria , 2007, The EMBO journal.

[23]  P. Bullough,et al.  Three-dimensional Reconstruction of a Membrane-bending Complex , 2008, Journal of Biological Chemistry.

[24]  S. Scheuring,et al.  Automated setpoint adjustment for biological contact mode atomic force microscopy imaging , 2010, Nanotechnology.

[25]  E. Shimoni,et al.  Gain and Loss of Photosynthetic Membranes during Plastid Differentiation in the Shoot Apex of Arabidopsis[W] , 2012, Plant Cell.

[26]  K. Gibson Nature of the Insoluble Pigmented Structures (Chromatophores) in Extracts and Lysates of Rhodopseudomonas spheroides , 1965 .

[27]  Simon Scheuring,et al.  Investigation of photosynthetic membrane structure using atomic force microscopy. , 2013, Trends in plant science.

[28]  N. Isaacs,et al.  Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris , 2003, Science.

[29]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[30]  R. Niederman Membranes of Rhodopseudomonas spheroides: Interactions of Chromatophores with the Cell Envelope , 1974, Journal of bacteriology.

[31]  A. Scherz,et al.  From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes , 2002, The EMBO journal.

[32]  A. G. Marr,et al.  Location of Chlorophyll in Rhodospirillum rubrum , 1965, Journal of bacteriology.

[33]  Simon Scheuring,et al.  Chromatic Adaptation of Photosynthetic Membranes , 2005, Science.

[34]  J. Dekker,et al.  Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides , 2002 .

[35]  E. Shimoni,et al.  Dynamic control of protein diffusion within the granal thylakoid lumen , 2011, Proceedings of the National Academy of Sciences.

[36]  Klaus Schulten,et al.  Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. , 2014, Biochimica et biophysica acta.

[37]  Danielle E. Chandler,et al.  Membrane curvature induced by aggregates of LH2s and monomeric LH1s. , 2009, Biophysical journal.

[38]  John E Walker,et al.  ATP Synthesis by Rotary Catalysis (Nobel lecture). , 1998, Angewandte Chemie.

[39]  S. Scheuring AFM studies of the supramolecular assembly of bacterial photosynthetic core-complexes. , 2006, Current opinion in chemical biology.

[40]  R. Niederman,et al.  The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers. , 2011, Biochemistry.

[41]  K. Gibson Isolation and Characterisation of Chromatophores from Rhodopseudomonas spheroides , 1965 .

[42]  A. Verméglio,et al.  Fast oxidation of the primary electron acceptor under anaerobic conditions requires the organization of the photosynthetic chain of Rhodobacter sphaeroides in supercomplexes. , 2005, Biochimica et biophysica acta.

[43]  Pu Qian,et al.  The 8.5A projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. , 2005, Journal of molecular biology.

[44]  F. Daldal,et al.  Cytochrome bc1-cy Fusion Complexes Reveal the Distance Constraints for Functional Electron Transfer Between Photosynthesis Components* , 2008, Journal of Biological Chemistry.

[45]  C. Mannella,et al.  Cryo-Electron Tomography Reveals the Comparative Three-Dimensional Architecture of Prochlorococcus, a Globally Important Marine Cyanobacterium , 2007, Journal of bacteriology.

[46]  R. Clayton The induced synthesis of catalase in Rhodopseudomonas spheroides. , 1960, Biochimica et biophysica acta.

[47]  I. Ohad,et al.  Three-Dimensional Organization of Higher-Plant Chloroplast Thylakoid Membranes Revealed by Electron Tomographyw⃞ , 2005, The Plant Cell Online.

[48]  Simon Scheuring,et al.  Structure of the Dimeric PufX-containing Core Complex of Rhodobacter blasticus by in Situ Atomic Force Microscopy* , 2005, Journal of Biological Chemistry.

[49]  S. Scheuring,et al.  Quinone pathways in entire photosynthetic chromatophores of Rhodospirillum photometricum. , 2009, Journal of molecular biology.

[50]  S. Scheuring,et al.  Forces guiding assembly of light-harvesting complex 2 in native membranes , 2011, Proceedings of the National Academy of Sciences.

[51]  G. Drews,et al.  Membranes of photosynthetic bacteria. , 1972, Biochimica et biophysica acta.

[52]  Cees Otto,et al.  The native architecture of a photosynthetic membrane , 2004, Nature.

[53]  E. Shimoni,et al.  Architecture of Thylakoid Membrane Networks , 2009 .

[54]  Sergio Marco,et al.  Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Sturgis,et al.  Oligomerization States and Associations of Light-Harvesting Pigment-Protein Complexes of Rhodobacter sphaeroides As Analyzed by Lithium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis , 1988 .

[56]  S. Scheuring,et al.  Structural Role of PufX in the Dimerization of the Photosynthetic Core Complex of Rhodobacter sphaeroides* , 2004, Journal of Biological Chemistry.

[57]  J. Sturgis,et al.  The effect of different levels of the B800-850 light-harvesting complex on intracytoplasmic membrane development in Rhodobacter sphaeroides , 1996, Archives of Microbiology.

[58]  V. Helms,et al.  A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides and the position of the Cytochrome bc1 complex. , 2006, Biophysical journal.

[59]  S. Scheuring,et al.  Native architecture of the photosynthetic membrane from Rhodobacter veldkampii. , 2011, Journal of structural biology.

[60]  Klaus Schulten,et al.  Protein-induced membrane curvature investigated through molecular dynamics flexible fitting. , 2009, Biophysical journal.

[61]  A. Crofts,et al.  Asymmetry of an energy transducing membrane the location of cytochrome c2 in Rhodopseudomonas spheroides and Rhodopseudomonas capsulata. , 1975, Biochimica et biophysica acta.

[62]  S. Scheuring,et al.  Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery , 2009, Photosynthesis Research.

[63]  Simon Scheuring,et al.  Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum , 2004, The EMBO journal.