A feasibility approach for constructing combinatorial designs of circulant type
暂无分享,去创建一个
Matthew K. Tam | Francisco J. Aragón Artacho | Ilias Kotsireas | Rubén Campoy | I. Kotsireas | F. J. A. Artacho | R. Campoy | Rubén Campoy
[1] Ilias S. Kotsireas,et al. D-Optimal Matrices of Orders 118, 138, 150, 154 and 174 , 2015 .
[2] J. Seberry,et al. Hadamard matrices, Sequences, and Block Designs , 1992 .
[3] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[4] Veit Elser,et al. Divide and concur: a general approach to constraint satisfaction. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] Heinz H. Bauschke,et al. On the Finite Convergence of the Douglas-Rachford Algorithm for Solving (Not Necessarily Convex) Feasibility Problems in Euclidean Spaces , 2017, SIAM J. Optim..
[6] Richard P. Brent. Finding D-optimal designs by randomised decomposition and switching , 2013, Australas. J Comb..
[7] Jennifer Seberry,et al. Hadamard ideals and Hadamard matrices with two circulant cores , 2006, Eur. J. Comb..
[8] Wim van Dam,et al. Quantum Algorithms for Weighing Matrices and Quadratic Residues , 2000, Algorithmica.
[9] Massimiliano Sala,et al. Gröbner Bases, Coding, and Cryptography , 2009 .
[10] Ilias S. Kotsireas,et al. Algorithms and Metaheuristics for Combinatorial Matrices , 2013 .
[11] H. Ehlich,et al. Determinantenabschätzungen für binäre Matrizen , 1964 .
[12] Ming Ming Tan. Group invariant weighing matrices , 2016, Des. Codes Cryptogr..
[13] C. Colbourn,et al. Handbook of Combinatorial Designs , 2006 .
[14] Guang Gong,et al. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .
[15] Ilias S. Kotsireas,et al. New Results on D‐Optimal Matrices , 2011, 1103.3626.
[16] Jonathan M. Borwein,et al. Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem , 2015, J. Glob. Optim..
[17] A. Pott,et al. Difference sets, sequences and their correlation properties , 1999 .
[18] Ilias S. Kotsireas,et al. Compression of periodic complementary sequences and applications , 2015, Des. Codes Cryptogr..
[19] Jennifer Seberry,et al. On circulant and two-circulant weighing matrices , 2010, Australas. J Comb..
[20] Ali Nabavi,et al. Determination of all possible orders of weight 16 circulant weighing matrices , 2006, Finite Fields Their Appl..
[21] Bernd Sturmfels,et al. Algorithms in Invariant Theory (Texts and Monographs in Symbolic Computation) , 2008 .
[22] K. Horadam. Hadamard Matrices and Their Applications , 2006 .
[23] T. Gulliver,et al. Self-Dual Codes over and Weighing Matrices , 2001 .
[24] Heinz H. Bauschke,et al. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.
[25] Ming Ming Tan. Relative difference sets and circulant weighing matrices , 2014 .
[26] Jennifer Seberry,et al. Circulant weighing matrices , 2010, Cryptography and Communications.
[27] Francisco J. Aragón Artacho,et al. Solving Graph Coloring Problems with the Douglas-Rachford Algorithm , 2016, Set-Valued and Variational Analysis.
[28] Ali Nabavi,et al. Circulant weighing matrices of weight 22t , 2006, Des. Codes Cryptogr..
[29] Matthew K. Tam,et al. DOUGLAS–RACHFORD FEASIBILITY METHODS FOR MATRIX COMPLETION PROBLEMS , 2013, The ANZIAM Journal.
[30] Douglas R. Stinson,et al. Combinatorial designs: constructions and analysis , 2003, SIGA.
[31] Robert Hesse,et al. Fixed Point Algorithms for Nonconvex Feasibility with Applications , 2014 .
[32] Simone Severini,et al. Weighing matrices and optical quantum computing , 2008, 0808.2057.
[33] Jennifer Seberry,et al. Orthogonal Designs: Hadamard Matrices, Quadratic Forms and Algebras , 2017 .
[34] Bernd Sturmfels,et al. Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.
[35] Jonathan M. Borwein,et al. Recent Results on Douglas–Rachford Methods for Combinatorial Optimization Problems , 2013, J. Optim. Theory Appl..
[36] William L. Briggs,et al. The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .
[37] Guang Gong,et al. Signal Design for Good Correlation: Preface , 2005 .
[38] Guy Pierra,et al. Decomposition through formalization in a product space , 1984, Math. Program..
[39] J. H. E. Cohn. On Determinants with Elements ±1, II , 1989 .
[40] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[41] T. Aaron Gulliver,et al. Self-dual codes over Fp and weighing matrices , 2001, IEEE Trans. Inf. Theory.
[42] V Elser,et al. Searching with iterated maps , 2007, Proceedings of the National Academy of Sciences.