A feasibility approach for constructing combinatorial designs of circulant type

In this work, we propose an optimization approach for constructing various classes of circulant combinatorial designs that can be defined in terms of autocorrelation. The problem is formulated as a so-called feasibility problem having three sets, to which the Douglas–Rachford projection algorithm is applied. The approach is illustrated on three different classes of circulant combinatorial designs: circulant weighing matrices, D-optimal matrices of circulant type, and Hadamard matrices with two circulant cores. Furthermore, we explicitly construct two new circulant weighing matrices, a CW(126, 64) and a CW(198, 100), whose existence was previously marked as unresolved in the most recent version of Strassler’s table.

[1]  Ilias S. Kotsireas,et al.  D-Optimal Matrices of Orders 118, 138, 150, 154 and 174 , 2015 .

[2]  J. Seberry,et al.  Hadamard matrices, Sequences, and Block Designs , 1992 .

[3]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[4]  Veit Elser,et al.  Divide and concur: a general approach to constraint satisfaction. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Heinz H. Bauschke,et al.  On the Finite Convergence of the Douglas-Rachford Algorithm for Solving (Not Necessarily Convex) Feasibility Problems in Euclidean Spaces , 2017, SIAM J. Optim..

[6]  Richard P. Brent Finding D-optimal designs by randomised decomposition and switching , 2013, Australas. J Comb..

[7]  Jennifer Seberry,et al.  Hadamard ideals and Hadamard matrices with two circulant cores , 2006, Eur. J. Comb..

[8]  Wim van Dam,et al.  Quantum Algorithms for Weighing Matrices and Quadratic Residues , 2000, Algorithmica.

[9]  Massimiliano Sala,et al.  Gröbner Bases, Coding, and Cryptography , 2009 .

[10]  Ilias S. Kotsireas,et al.  Algorithms and Metaheuristics for Combinatorial Matrices , 2013 .

[11]  H. Ehlich,et al.  Determinantenabschätzungen für binäre Matrizen , 1964 .

[12]  Ming Ming Tan Group invariant weighing matrices , 2016, Des. Codes Cryptogr..

[13]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .

[14]  Guang Gong,et al.  Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .

[15]  Ilias S. Kotsireas,et al.  New Results on D‐Optimal Matrices , 2011, 1103.3626.

[16]  Jonathan M. Borwein,et al.  Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem , 2015, J. Glob. Optim..

[17]  A. Pott,et al.  Difference sets, sequences and their correlation properties , 1999 .

[18]  Ilias S. Kotsireas,et al.  Compression of periodic complementary sequences and applications , 2015, Des. Codes Cryptogr..

[19]  Jennifer Seberry,et al.  On circulant and two-circulant weighing matrices , 2010, Australas. J Comb..

[20]  Ali Nabavi,et al.  Determination of all possible orders of weight 16 circulant weighing matrices , 2006, Finite Fields Their Appl..

[21]  Bernd Sturmfels,et al.  Algorithms in Invariant Theory (Texts and Monographs in Symbolic Computation) , 2008 .

[22]  K. Horadam Hadamard Matrices and Their Applications , 2006 .

[23]  T. Gulliver,et al.  Self-Dual Codes over and Weighing Matrices , 2001 .

[24]  Heinz H. Bauschke,et al.  Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.

[25]  Ming Ming Tan Relative difference sets and circulant weighing matrices , 2014 .

[26]  Jennifer Seberry,et al.  Circulant weighing matrices , 2010, Cryptography and Communications.

[27]  Francisco J. Aragón Artacho,et al.  Solving Graph Coloring Problems with the Douglas-Rachford Algorithm , 2016, Set-Valued and Variational Analysis.

[28]  Ali Nabavi,et al.  Circulant weighing matrices of weight 22t , 2006, Des. Codes Cryptogr..

[29]  Matthew K. Tam,et al.  DOUGLAS–RACHFORD FEASIBILITY METHODS FOR MATRIX COMPLETION PROBLEMS , 2013, The ANZIAM Journal.

[30]  Douglas R. Stinson,et al.  Combinatorial designs: constructions and analysis , 2003, SIGA.

[31]  Robert Hesse,et al.  Fixed Point Algorithms for Nonconvex Feasibility with Applications , 2014 .

[32]  Simone Severini,et al.  Weighing matrices and optical quantum computing , 2008, 0808.2057.

[33]  Jennifer Seberry,et al.  Orthogonal Designs: Hadamard Matrices, Quadratic Forms and Algebras , 2017 .

[34]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[35]  Jonathan M. Borwein,et al.  Recent Results on Douglas–Rachford Methods for Combinatorial Optimization Problems , 2013, J. Optim. Theory Appl..

[36]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[37]  Guang Gong,et al.  Signal Design for Good Correlation: Preface , 2005 .

[38]  Guy Pierra,et al.  Decomposition through formalization in a product space , 1984, Math. Program..

[39]  J. H. E. Cohn On Determinants with Elements ±1, II , 1989 .

[40]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[41]  T. Aaron Gulliver,et al.  Self-dual codes over Fp and weighing matrices , 2001, IEEE Trans. Inf. Theory.

[42]  V Elser,et al.  Searching with iterated maps , 2007, Proceedings of the National Academy of Sciences.