Role of chromatin structure in the regulation of transcription by RNA polymerase II.

[1]  Jerry L. Workman,et al.  Nucleosome displacement in transcription , 1993, Cell.

[2]  J. T. Kadonaga,et al.  In vivo and in vitro analysis of transcriptional activation mediated by the human cytomegalovirus major immediate-early proteins , 1993, Molecular and cellular biology.

[3]  Alan P. Wolffe,et al.  A positive role for histone acetylation in transcription factor access to nucleosomal DNA , 1993, Cell.

[4]  J. T. Kadonaga,et al.  Periodic binding of individual core histones to DNA: inadvertent purification of the core histone H2B as a putative enhancer-binding factor. , 1992, Nucleic acids research.

[5]  J. Workman,et al.  Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. , 1992, Science.

[6]  I. Herskowitz,et al.  Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. , 1992, Science.

[7]  Steven A. Brown,et al.  Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. , 1992, Genes & development.

[8]  J. T. Kadonaga,et al.  Mechanism of transcriptional antirepression by GAL4-VP16. , 1992, Genes & development.

[9]  R. Kornberg,et al.  Initiation on chromatin templates in a yeast RNA polymerase II transcription system. , 1992, Genes & development.

[10]  K. Fascher,et al.  Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication , 1992, Cell.

[11]  N. Mermod,et al.  Purified cofactors and histone H1 mediate transcriptional regulation by CTF/NF-I , 1992, Molecular and cellular biology.

[12]  J. Lis,et al.  Promoter melting and TFIID complexes on Drosophila genes in vivo. , 1992, Genes & development.

[13]  G. Felsenfeld,et al.  A nucleosome core is transferred out of the path of a transcribing polymerase , 1992, Cell.

[14]  J. T. Kadonaga,et al.  Threshold phenomena and long-distance activation of transcription by RNA polymerase II. , 1992, Science.

[15]  M. Grunstein,et al.  Histone H3 N‐terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. , 1992, The EMBO journal.

[16]  M. Carlson,et al.  Yeast SNF2/SWI2, SNF5, and SNF6 proteins function coordinately with the gene-specific transcriptional activators GAL4 and Bicoid. , 1992, Genes & development.

[17]  Y. Kohwi,et al.  A tissue-specific MAR SAR DNA-binding protein with unusual binding site recognition , 1992, Cell.

[18]  L. Hennighausen,et al.  Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Luse,et al.  Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. , 1992, The Journal of biological chemistry.

[20]  S. Orkin,et al.  In vivo protein-DNA interactions at hypersensitive site 3 of the human beta-globin locus control region. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Elgin,et al.  Promoter sequence containing (CT)n.(GA)n repeats is critical for the formation of the DNase I hypersensitive sites in the Drosophila hsp26 gene. , 1992, Journal of molecular biology.

[22]  W. C. Forrester,et al.  Inactivation of the human beta-globin gene by targeted insertion into the beta-globin locus control region. , 1992, Genes & development.

[23]  M. Grunstein,et al.  Identification of a non‐basic domain in the histone H4 N‐terminus required for repression of the yeast silent mating loci. , 1992, The EMBO journal.

[24]  R. Kellum,et al.  A group of scs elements function as domain boundaries in an enhancer-blocking assay , 1992, Molecular and cellular biology.

[25]  S. Orkin,et al.  In vivo footprinting of the human alpha-globin locus upstream regulatory element by guanine and adenine ligation-mediated polymerase chain reaction , 1992, Molecular and cellular biology.

[26]  J. Sharpe,et al.  A single beta-globin locus control region element (5' hypersensitive site 2) is sufficient for developmental regulation of human globin genes in transgenic mice , 1992, Molecular and cellular biology.

[27]  P. Becker,et al.  Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. , 1992, Molecular and cellular biology.

[28]  B. Turner,et al.  Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei , 1992, Cell.

[29]  M. Grunstein,et al.  Nucleosome loss activates CUP1 and HIS3 promoters to fully induced levels in the yeast Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[30]  J. Lingrel,et al.  Human gamma- to beta-globin gene switching using a mini construct in transgenic mice , 1992, Molecular and cellular biology.

[31]  J. Thorner,et al.  A presumptive helicase (MOT1 gene product) affects gene expression and is required for viability in the yeast Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[32]  U. Hansen,et al.  In vitro initiation of transcription by RNA polymerase II on in vivo-assembled chromatin templates , 1992, Molecular and cellular biology.

[33]  G. Hager,et al.  Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. , 1992, Science.

[34]  M. Grunstein,et al.  Stable nucleosome positioning and complete repression by the yeast alpha 2 repressor are disrupted by amino-terminal mutations in histone H4. , 1992, Genes & development.

[35]  K. V. van Holde,et al.  What happens to nucleosomes during transcription? , 1992, The Journal of biological chemistry.

[36]  I. Herskowitz,et al.  Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription , 1992, Cell.

[37]  J. Lis,et al.  DNA sequence requirements for generating paused polymerase at the start of hsp70. , 1992, Genes & development.

[38]  A. Nienhuis,et al.  Mechanism of DNase I hypersensitive site formation within the human globin locus control region. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Richard-Foy,et al.  The transcriptionally-active MMTV promoter is depleted of histone H1. , 1992, Nucleic acids research.

[40]  G. Felsenfeld,et al.  Chromatin as an essential part of the transcriptional mechanim , 1992, Nature.

[41]  J. Bode,et al.  Biological significance of unwinding capability of nuclear matrix-associating DNAs. , 1992, Science.

[42]  U. K. Laemmli,et al.  Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. , 1992, Current opinion in genetics & development.

[43]  R. Kornberg,et al.  Irresistible force meets immovable object: Transcription and the nucleosome , 1991, Cell.

[44]  J. T. Kadonaga,et al.  Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. , 1991, Science.

[45]  M. Shimizu,et al.  Nucleosomes are positioned with base pair precision adjacent to the alpha 2 operator in Saccharomyces cerevisiae. , 1991, The EMBO journal.

[46]  J. Workman,et al.  Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. , 1991, Genes & development.

[47]  S. Rabindran,et al.  Heat shock-regulated transcription in vitro from a reconstituted chromatin template. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Paul Schedl,et al.  A position-effect assay for boundaries of higher order chromosomal domains , 1991, Cell.

[49]  K. Khrapko,et al.  Distribution of high mobility group proteins 1/2, E and 14/17 and linker histones H1 and H5 on transcribed and non-transcribed regions of chicken erythrocyte chromatin. , 1991, Nucleic acids research.

[50]  J. Workman,et al.  Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes , 1991, Cell.

[51]  L. M. Lira,et al.  Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. , 1991, Science.

[52]  J. T. Kadonaga,et al.  Accurate and efficient RNA polymerase II transcription with a soluble nuclear fraction derived from Drosophila embryos. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[53]  L. M. Lira,et al.  Sequence-specific transcriptional antirepression of the Drosophila Krüppel gene by the GAGA factor. , 1991, The Journal of biological chemistry.

[54]  R. Kamakaka,et al.  Chromatin structure of transcriptionally competent and repressed genes. , 1990, The EMBO journal.

[55]  J. Workman,et al.  An upstream transcription factor, USF (MLTF), facilitates the formation of preinitiation complexes during in vitro chromatin assembly. , 1990, The EMBO journal.

[56]  J. Leatherwood,et al.  A potent GAL4 derivative activates transcription at a distance in vitro. , 1990, Science.

[57]  M. Grunstein Histone function in transcription. , 1990, Annual review of cell biology.

[58]  A. E. Sippel,et al.  A nuclear DNA attachment element mediates elevated and position-independent gene activity , 1989, Nature.

[59]  A. Mirzabekov,et al.  Change in the pattern of histone binding to DNA upon transcriptional activation , 1989, Cell.

[60]  S. Elgin,et al.  The formation and function of DNase I hypersensitive sites in the process of gene activation. , 1988, The Journal of biological chemistry.

[61]  M. Grunstein,et al.  Nucleosome loss activates yeast downstream promoters in vivo , 1988, Cell.

[62]  A. Rougvie,et al.  The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged , 1988, Cell.

[63]  F. Winston,et al.  Changes in histone gene dosage alter transcription in yeast. , 1988, Genes & development.

[64]  D. S. Gross,et al.  Nuclease hypersensitive sites in chromatin. , 1988, Annual review of biochemistry.

[65]  J. Workman,et al.  Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II , 1987, Cell.

[66]  H. Richard-Foy,et al.  Sequence‐specific positioning of nucleosomes over the steroid‐inducible MMTV promoter. , 1987, The EMBO journal.

[67]  R. Kornberg,et al.  Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones , 1987, Cell.

[68]  T. Matsui Transcription of adenovirus 2 major late and peptide IX genes under conditions of in vitro nucleosome assembly , 1987, Molecular and cellular biology.

[69]  J. Knezetic,et al.  The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro , 1986, Cell.

[70]  R. Roeder,et al.  Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. , 1983, Nucleic acids research.

[71]  Claudio Nicolini,et al.  Chromatin Structure and Function , 1979, NATO Advanced Study Institutes Series.