Membrane insertion of—and membrane potential sensing by—semiconductor voltage nanosensors: Feasibility demonstration

Can semiconductor voltage nanosensors record neuronal signals? We developed membrane voltage nanosensors that are based on inorganic semiconductor nanoparticles. We provide here a feasibility study for their utilization. We use a rationally designed peptide to functionalize the nanosensors, imparting them with the ability to self-insert into a lipid membrane with a desired orientation. Once inserted, these nanosensors could sense membrane potential via the quantum confined Stark effect, with a single-particle sensitivity. With further improvements, these nanosensors could potentially be used for simultaneous recording of action potentials from multiple neurons in a large field of view over a long duration and for recording electrical signals on the nanoscale, such as across one synapse.

[1]  Shimon Weiss,et al.  Design Rules for Membrane-Embedded Voltage-Sensing Nanoparticles , 2017, Biophysical journal.

[2]  Stefan Howorka,et al.  Bilayer-Spanning DNA Nanopores with Voltage-Switching between Open and Closed State , 2014, ACS nano.

[3]  Helen Shen,et al.  Interactive notebooks: Sharing the code , 2014, Nature.

[4]  Costas P. Grigoropoulos,et al.  Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes , 2014, Nature.

[5]  Juan B. Blanco-Canosa,et al.  Recent progress in the bioconjugation of quantum dots , 2014 .

[6]  Christopher A. Werley,et al.  Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells , 2013, PloS one.

[7]  Jesse D. Marshall,et al.  Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. , 2013, ACS nano.

[8]  Robert T. Sauer,et al.  Allosteric regulation of DegS protease subunits though a shared energy landscape , 2012, Nature chemical biology.

[9]  Shimon Weiss,et al.  Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature , 2012, Photonics West - Biomedical Optics.

[10]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[11]  M. Teitell,et al.  Nanoblade delivery and incorporation of quantum dot conjugates into tubulin networks in live cells. , 2012, Nano letters.

[12]  Incorporation of quantum dots into the lipid bilayer of giant unilamellar vesicles and its stability. , 2012, Colloids and surfaces. B, Biointerfaces.

[13]  Shimon Weiss,et al.  Stable, compact, bright biofunctional quantum dots with improved peptide coating. , 2012, The journal of physical chemistry. B.

[14]  Tianquan Lian,et al.  Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. , 2012, Journal of the American Chemical Society.

[15]  J. L. Movilla,et al.  Auger recombination suppression in nanocrystals with asymmetric electron-hole confinement. , 2012, Small.

[16]  Roger Y. Tsien,et al.  Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires , 2012, Proceedings of the National Academy of Sciences.

[17]  D. Maclaurin,et al.  Optical recording of action potentials in mammalian neurons using a microbial rhodopsin , 2011, Nature Methods.

[18]  Grigory Tikhomirov,et al.  DNA-based programming of quantum dot valency, self-assembly and luminescence. , 2011, Nature nanotechnology.

[19]  Eun Kyung Lee,et al.  Full-colour quantum dot displays fabricated by transfer printing , 2011 .

[20]  Juan Bisquert,et al.  Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells , 2010 .

[21]  T. Ebbesen,et al.  Colloidal quantum dots as probes of excitation field enhancement in photonic antennas. , 2010, ACS nano.

[22]  Igor L. Medintz,et al.  Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. , 2010, Nature materials.

[23]  M. Lensink,et al.  Fusogenic activity of cationic lipids and lipid shape distribution , 2010, Cellular and Molecular Life Sciences.

[24]  P. El-Khoury,et al.  Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. , 2009, Journal of the American Chemical Society.

[25]  Robert Sinclair,et al.  Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. , 2008, Small.

[26]  F. Pinaud,et al.  High affinity scFv-hapten pair as a tool for quantum dot labeling and tracking of single proteins in live cells. , 2008, Nano letters.

[27]  Maria Jose Ruedas-Rama,et al.  Azamacrocycle activated quantum dot for zinc ion detection. , 2008, Analytical chemistry.

[28]  Kostas Kostarelos,et al.  Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. , 2008, ACS nano.

[29]  A. Savchenko,et al.  Bright future of optical assays for ion channel drug discovery. , 2008, Drug discovery today.

[30]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[31]  Kai Zhang,et al.  Single quantum dots as local temperature markers. , 2007, Nano letters.

[32]  Jagjit Nanda,et al.  Single-exciton optical gain in semiconductor nanocrystals , 2007, Nature.

[33]  F. Pinaud,et al.  Solubilization of quantum dots with a recombinant peptide from Escherichia coli. , 2007, Small.

[34]  Alessandro Senes,et al.  E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices. , 2007, Journal of molecular biology.

[35]  Bansi D Malhotra,et al.  Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[36]  Horst Weller,et al.  Electrical control of Förster energy transfer , 2006, Nature materials.

[37]  Christophe Danelon,et al.  Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. , 2006, Angewandte Chemie.

[38]  Igor L. Medintz,et al.  Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. , 2006, Bioconjugate chemistry.

[39]  Shimon Weiss,et al.  Advances in fluorescence imaging with quantum dot bio-probes. , 2006, Biomaterials.

[40]  A. Rogach,et al.  Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures , 2005 .

[41]  P. Lagoudakis,et al.  Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. , 2005, Nano letters.

[42]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[43]  F. Pinaud,et al.  Enhancing the photoluminescence of peptide-coated nanocrystals with shell composition and UV irradiation. , 2005, The journal of physical chemistry. B.

[44]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[45]  J. Nadeau,et al.  FRET between CdSe quantum dots in lipid vesicles and water- and lipid-soluble dyes , 2004 .

[46]  Shimon Weiss,et al.  Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.

[47]  Oliver Benson,et al.  Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality , 2003 .

[48]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[49]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[50]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[51]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[52]  Augusto Visintin,et al.  Nucleation and Growth , 1996 .

[53]  I. Wróbel,et al.  Fusion of cationic liposomes with mammalian cells occurs after endocytosis. , 1995, Biochimica et biophysica acta.

[54]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[55]  S. Ishiwata,et al.  Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium , 1991, The Journal of cell biology.

[56]  D. Axelrod Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. , 1979, Biophysical journal.