Ultrafast relaxation of photoexcited superfluid He nanodroplets

The relaxation of photoexcited nanosystems is a fundamental process of light–matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He$${}^{* }$$*) within 1 ps. Subsequently, the bubble collapses and releases metastable He$${}^{* }$$* at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses.There is interest in understanding the relaxation mechanisms of photoexcitation in atoms, molecules and other complex systems. Here the authors unravel the photoexcitation and ultrafast relaxation of superfluid helium nanodroplets using a pump-probe experiment with FEL pulses.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. Fricke The Reduction of Oxygen to Hydrogen Peroxide by the Irradiation of Its Aqueous Solution with X‐Rays , 1934 .

[3]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[4]  J. Hansen,et al.  LIQUID HELIUM CONFIGURATION AROUND A METASTABLE EXCITED HELIUM ATOM. , 1972 .

[5]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[6]  W. Goddard,et al.  Nature of the excited states of He 2 , 1975 .

[7]  K. Jordan,et al.  Theoretical investigation of the a 3Σ+u, A 1Σ+u, c 3Σ+g, and C 1Σ+g potential energy curves of He2 and of He*(2 1S, 2 3S)+He scattering , 1983 .

[8]  D. Yarkony,et al.  Theoretical study of the radiative lifetime for the spin‐forbidden transition a 3Σ+u→X 1Σ+g in He2 , 1989 .

[9]  J. Northby,et al.  Excitation and ionization of 4He clusters by electrons , 1991 .

[10]  Hans-Joachim Werner,et al.  Internally contracted multiconfiguration-reference configuration interaction calculations for excited states , 1992 .

[11]  Möller,et al.  Electronic excitations in liquid helium: The evolution from small clusters to large droplets. , 1993, Physical review letters.

[12]  Jortner,et al.  Dynamics of the formation of an electron bubble in liquid helium. , 1995, Physical review letters.

[13]  Electronic excitation, decay and photochemical processes in rare gas clusters , 1995 .

[14]  J. Toennies,et al.  The photoionization of large pure and doped helium droplets , 1996 .

[15]  T. Möller,et al.  Discrete Visible Luminescence of Helium Atoms and Molecules Desorbing from Helium Clusters: The Role of Electronic, Vibrational, and Rotational Energy Transfer. , 1997 .

[16]  David H. Parker,et al.  Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen , 1997 .

[17]  Trygve Helgaker,et al.  The CC3 model: An iterative coupled cluster approach including connected triples , 1997 .

[18]  V. A. Apkarian,et al.  A direct interrogation of superfluidity on molecular scales , 2002 .

[19]  T. Möller,et al.  Bubble formation and decay in 3He and 4He clusters. , 2002, Physical review letters.

[20]  D. Peterka,et al.  Photoelectron imaging of helium droplets. , 2003, Physical review letters.

[21]  I. Powis,et al.  Two-dimensional charged particle image inversion using a polar basis function expansion , 2004 .

[22]  J. Toennies,et al.  Superfluid helium droplets: a uniquely cold nanomatrix for molecules and molecular complexes. , 2004, Angewandte Chemie.

[23]  J. Toennies,et al.  Superfluid Helium Droplets: A Uniquely Cold Nanomatrix for Molecules and Molecular Complexes , 2004 .

[24]  Rollin A King,et al.  Coupled cluster methods including triple excitations for excited states of radicals. , 2005, The Journal of chemical physics.

[25]  M. Pi,et al.  Helium Nanodroplets: An Overview , 2006 .

[26]  F. Stienkemeier,et al.  Spectroscopy and dynamics in helium nanodroplets , 2006, physics/0604090.

[27]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[28]  U. Even,et al.  Rapidly pulsed helium droplet source. , 2009, The Review of scientific instruments.

[29]  Pavel Hobza,et al.  Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases , 2010, Proceedings of the National Academy of Sciences.

[30]  Vibrational relaxation and decoherence of Rb_2 attached to helium nanodroplets , 2010 .

[31]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[32]  M. Mudrich,et al.  Vibrational relaxation and dephasing of Rb2 attached to helium nanodroplets. , 2010, Physical chemistry chemical physics : PCCP.

[33]  S. Leone,et al.  Femtosecond photoelectron imaging of transient electronic states and Rydberg atom emission from electronically excited he droplets. , 2011, The journal of physical chemistry. A.

[34]  William A. Barletta,et al.  Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet , 2012, Nature Photonics.

[35]  M. Drabbels,et al.  Desorption of alkali atoms from 4He nanodroplets. , 2012, Physical chemistry chemical physics : PCCP.

[36]  S. Leone,et al.  Ultrafast probing of ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets. , 2012, The Journal of chemical physics.

[37]  A. Vilesov,et al.  Traces of vortices in superfluid helium droplets. , 2012, Physical review letters.

[38]  Matthew L. Leininger,et al.  Psi4: an open‐source ab initio electronic structure program , 2012 .

[39]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[40]  L. Cederbaum,et al.  A new intermolecular mechanism to selectively drive photoinduced damages , 2013, 1303.6440.

[41]  M. Drabbels,et al.  Critical Landau velocity in helium nanodroplets. , 2013, Physical review letters.

[42]  G. Wiederrecht,et al.  Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. , 2013, Journal of the American Chemical Society.

[43]  M. Drabbels,et al.  Translational dynamics of photoexcited atoms in 4He nanodroplets: the case of silver. , 2013, Physical chemistry chemical physics : PCCP.

[44]  Marcello Coreno,et al.  A modular end-station for atomic, molecular, and cluster science at the low density matter beamline of FERMI@Elettra , 2013 .

[45]  S. Leone,et al.  Femtosecond time-resolved XUV + UV photoelectron imaging of pure helium nanodroplets. , 2014, The Journal of chemical physics.

[46]  F. Spiegelman,et al.  Coupled electronic and structural relaxation pathways in the postexcitation dynamics of Rydberg states of BaArN clusters. , 2014, Physical review letters.

[47]  L. Cederbaum,et al.  Site- and energy-selective slow-electron production through intermolecular Coulombic decay , 2013, Nature.

[48]  M. Head‐Gordon,et al.  Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states. , 2014, The Journal of chemical physics.

[49]  J. Eloranta,et al.  Interaction of Helium Rydberg State Atoms with Superfluid Helium , 2014 .

[50]  M. Mudrich,et al.  Desorption dynamics of heavy alkali metal atoms (Rb, Cs) off the surface of helium nanodroplets. , 2014, The journal of physical chemistry. A.

[51]  Christian George,et al.  Heterogeneous Photochemistry in the Atmosphere , 2015, Chemical reviews.

[52]  O. Gessner,et al.  Ultrafast electronic dynamics in helium nanodroplets , 2015 .

[53]  G. L. Puma,et al.  Photocatalysis: Fundamentals and Perspectives , 2016 .

[54]  S. Leone,et al.  Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy. , 2016, The Journal of chemical physics.

[55]  Luca Poletto,et al.  Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source , 2016, Nature Communications.

[56]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[57]  M. Mudrich,et al.  Imaging Excited-State Dynamics of Doped He Nanodroplets in Real-Time. , 2017, The journal of physical chemistry letters.

[58]  A. Hernando,et al.  Density functional theory of doped superfluid liquid helium and nanodroplets , 2017, 1708.02652.

[59]  J. Kaczmarczyk,et al.  Laser-Induced Rotation of Iodine Molecules in Helium Nanodroplets: Revivals and Breaking Free. , 2017, Physical review letters.

[60]  B. Thaler,et al.  Femtosecond photoexcitation dynamics inside a quantum solvent , 2018, Nature Communications.

[61]  M. Mudrich,et al.  Quantum dynamics of Rb atoms desorbing off the surface of He nanodroplets , 2018, Physical Review A.

[62]  N. Timofeev,et al.  Relaxation times measurement in single and multiply excited xenon clusters. , 2018, The Journal of chemical physics.

[63]  Marcello Coreno,et al.  Three-Dimensional Shapes of Spinning Helium Nanodroplets. , 2018, Physical review letters.

[64]  K. Prince,et al.  Real-Time Dynamics of the Formation of Hydrated Electrons upon Irradiation of Water Clusters with Extreme Ultraviolet Light. , 2019, Physical review letters.

[65]  Chem. , 2020, Catalysis from A to Z.

[66]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.