Families of cut-graphs for bordered meshes with arbitrary genus

Given a triangulated surface M with arbitrary genus, the set of its cut-graphs depends on the underlying topology and the selection of a specific one should be guided by the surface geometry and targeted applications. Most of the previous work on this topic uses mesh traversal techniques for the evaluation of the geodesic metric, and therefore the cut-graphs are influenced by the mesh connectivity. Our solution is to build up the cut-graph on the iso-contours of a function f:M->R, that cut the topological handles of M, and on the completion of the cut-graph on the planar domain. In the planar domain, geodesic curves are defined by line segments whose counterparts on M, with respect to a diffeomorphism @f:M->R^2, are smooth approximations of geodesic paths. Our method defines a family of cut-graphs of M which can target different applications, such as global parameterization with respect to different criteria (e.g., minimal length, minimization of the parameterization distortion, or interpolation of points as required by remeshing and texture mapping) or the calculation of polygonal schemes for surface classification. The proposed approach finds a cut-graph of an arbitrary triangle mesh M with n vertices and b boundary components in O((b-1)n) time if M has 0-genus, and O(n(log(n)+2g+b-1)) time if g>=1. The associated polygonal schema is reduced if g=0, and it has a constant number of redundant edges otherwise.

[1]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[2]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[3]  R. Smullyan ANNALS OF MATHEMATICS STUDIES , 1961 .

[4]  Chee-Keng Yap,et al.  Computational complexity of combinatorial surfaces , 1990, SCG '90.

[5]  Valerio Pascucci,et al.  Efficient computation of the topology of level sets , 2002, IEEE Visualization, 2002. VIS 2002..

[6]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[7]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[8]  Anath Fischer,et al.  Cutting 3D freeform objects with genus-n into single boundary surfaces using topological graphs , 2002, SMA '02.

[9]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[10]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[11]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[12]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[13]  Giuseppe Patanè,et al.  Para‐Graph: Graph‐Based Parameterization of Triangle Meshes with Arbitrary Genus , 2004, Comput. Graph. Forum.

[14]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[15]  T. Banchoff CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .

[16]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2005, Discret. Comput. Geom..

[17]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[18]  李幼升,et al.  Ph , 1989 .

[19]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[20]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[21]  Anne Verroust-Blondet,et al.  Level set diagrams of polyhedral objects , 1999, SMA '99.

[22]  Valerio Pascucci,et al.  Loops in Reeb Graphs of 2-Manifolds , 2004, Discret. Comput. Geom..

[23]  Jarek Rossignac,et al.  Edgebreaker: a simple compression for surfaces with handles , 2002, SMA '02.

[24]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[25]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[26]  Christian Rössl,et al.  Setting the boundary free: a composite approach to surface parameterization , 2005, SGP '05.

[27]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[28]  John C. Hart,et al.  Seamster: inconspicuous low-distortion texture seam layout , 2002, IEEE Visualization, 2002. VIS 2002..

[29]  Giuseppe Patanè,et al.  Shape-Covering for Skeleton Extraction , 2002, Int. J. Shape Model..

[30]  A. Fischer,et al.  Planar parameterization for closed 2-manifold genus-1 meshes , 2004, SM '04.

[31]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[32]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[33]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[34]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[35]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.