Hyperprojective Hierarchy of QCB_0-spaces

We extend the Luzin hierarchy of qcb$_0$-spaces introduced in [ScS13] to all countable ordinals, obtaining in this way the hyperprojective hierarchy of qcb$_0$-spaces. We generalize all main results of [ScS13] to this larger hierarchy. In particular, we extend the Kleene-Kreisel continuous functionals of finite types to the continuous functionals of countable types and relate them to the new hierarchy. We show that the category of hyperprojective qcb$_0$-spaces has much better closure properties than the category of projective qcb$_0$-space. As a result, there are natural examples of spaces that are hyperprojective but not projective.

[1]  Victor L. Selivanov,et al.  Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..

[2]  Matthew de Brecht Quasi-Polish spaces , 2011, Ann. Pure Appl. Log..

[3]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[4]  D. Normann Recursion on the countable functionals , 1980 .

[5]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[6]  D. Normann The countable functionals , 1980 .

[7]  Dag Normann,et al.  The Continuous Functionals , 1999, Handbook of Computability Theory.

[8]  Benjamin Naumann,et al.  Classical Descriptive Set Theory , 2016 .

[9]  J. Lawson,et al.  Comparing Cartesian closed categories of (core) compactly generated spaces , 2004 .

[10]  A. Kechris Classical descriptive set theory , 1987 .

[11]  Victor L. Selivanov,et al.  Total Representations , 2013, Log. Methods Comput. Sci..

[12]  Dag Normann,et al.  Countable functionals and the projective hierarchy , 1981, Journal of Symbolic Logic.

[13]  Alexander S. Kechris,et al.  Games, Scales, and Suslin Cardinals: The Cabal Seminar, Volume I: Suslin cardinals, k -Suslin sets, and the scale property in the hyperprojective hierarchy , 2008 .

[14]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[15]  Matthias Schröder,et al.  Extended admissibility , 2002, Theor. Comput. Sci..

[16]  Christoph Kreitz,et al.  Theory of Representations , 1985, Theor. Comput. Sci..

[17]  Victor L. Selivanov,et al.  Some hierarchies of QCB 0-spaces , 2013, Mathematical Structures in Computer Science.

[18]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[19]  J. Hyland,et al.  Filter spaces and continuous functionals , 1979 .

[20]  Victor L. Selivanov,et al.  Hyperprojective Hierarchy of qcb0-Spaces , 2014, CiE.

[21]  Matthias Schröder,et al.  Admissible representations for continuous computations , 2003 .

[22]  D. Dalen Review: Georg Kreisel, Godel's Intepretation of Heyting's Arithmetic; G. Kreisel, Relations Between Classes of Constructive Functionals; Georg Kreisel, A. Heyting, Interpretation of Analysis by Means of Constructive Functionals of Finite Types , 1971 .