Hyperprojective Hierarchy of QCB_0-spaces
暂无分享,去创建一个
[1] Victor L. Selivanov,et al. Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..
[2] Matthew de Brecht. Quasi-Polish spaces , 2011, Ann. Pure Appl. Log..
[3] Klaus Weihrauch,et al. Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.
[4] D. Normann. Recursion on the countable functionals , 1980 .
[5] K. Hofmann,et al. A Compendium of Continuous Lattices , 1980 .
[6] D. Normann. The countable functionals , 1980 .
[7] Dag Normann,et al. The Continuous Functionals , 1999, Handbook of Computability Theory.
[8] Benjamin Naumann,et al. Classical Descriptive Set Theory , 2016 .
[9] J. Lawson,et al. Comparing Cartesian closed categories of (core) compactly generated spaces , 2004 .
[10] A. Kechris. Classical descriptive set theory , 1987 .
[11] Victor L. Selivanov,et al. Total Representations , 2013, Log. Methods Comput. Sci..
[12] Dag Normann,et al. Countable functionals and the projective hierarchy , 1981, Journal of Symbolic Logic.
[13] Alexander S. Kechris,et al. Games, Scales, and Suslin Cardinals: The Cabal Seminar, Volume I: Suslin cardinals, k -Suslin sets, and the scale property in the hyperprojective hierarchy , 2008 .
[14] D. Prowe. Berlin , 1855, Journal of public health, and sanitary review.
[15] Matthias Schröder,et al. Extended admissibility , 2002, Theor. Comput. Sci..
[16] Christoph Kreitz,et al. Theory of Representations , 1985, Theor. Comput. Sci..
[17] Victor L. Selivanov,et al. Some hierarchies of QCB 0-spaces , 2013, Mathematical Structures in Computer Science.
[18] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[19] J. Hyland,et al. Filter spaces and continuous functionals , 1979 .
[20] Victor L. Selivanov,et al. Hyperprojective Hierarchy of qcb0-Spaces , 2014, CiE.
[21] Matthias Schröder,et al. Admissible representations for continuous computations , 2003 .
[22] D. Dalen. Review: Georg Kreisel, Godel's Intepretation of Heyting's Arithmetic; G. Kreisel, Relations Between Classes of Constructive Functionals; Georg Kreisel, A. Heyting, Interpretation of Analysis by Means of Constructive Functionals of Finite Types , 1971 .