Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity.

The structural and electrical properties of a metal-halide cubic perovskite, CH(3)NH(3)SnI(3), have been examined. The band structure, obtained using first-principles calculation, reveals a well-defined band gap at the Fermi level. However, the temperature dependence of the single-crystal electrical conductivity shows metallic behavior down to low temperatures. The temperature dependence of the thermoelectric power is also metallic over the whole temperature range, and the large positive value indicates that charge transport occurs with a low concentration of hole carriers. The metallic properties of this as-grown crystal are thus suggested to result from spontaneous hole-doping in the crystallization process, rather than the semi-metal electronic structure. The present study shows that artificial hole doping indeed enhances the conductivity.

[1]  G. Cantele,et al.  Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides , 2008 .

[2]  R. Vaglio,et al.  Combined experimental and theoretical investigation of optical, structural and electronic properties of CH3NH3SnX3 thin films (X=Cl,Br) , 2008 .

[3]  T. Inabe,et al.  Tunable Charge Transport in Soluble Organic–Inorganic Hybrid Semiconductors , 2007 .

[4]  David B. Mitzi,et al.  Synthesis, Structure, and Properties of Organic‐Inorganic Perovskites and Related Materials , 2007 .

[5]  David B Mitzi,et al.  Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. , 2005, Inorganic chemistry.

[6]  H. Mashiyama,et al.  Structural Study on Cubic–Tetragonal Transition of CH3NH3PbI3 , 2002 .

[7]  D. Mitzi,et al.  Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH2CH=NH2SnI3and Related Systems , 1997 .

[8]  B. Chan,et al.  The Synthesis, Characterization, and Lewis Acidity of SnI2 and SnI4 , 1997 .

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  David B. Mitzi,et al.  Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb) , 1996 .

[11]  Laurent Ducasse,et al.  Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units , 1996 .

[12]  G. Papavassiliou,et al.  Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems , 1995 .

[13]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[14]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[15]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[16]  Maria Cristina Burla,et al.  SIR92 – a program for automatic solution of crystal structures by direct methods , 1994 .

[17]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[18]  J. F. Kwak,et al.  Apparatus for thermopower measurements on organic conductors , 1975 .

[19]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[20]  J. Ziman Principles of the Theory of Solids , 1965 .

[21]  David B. Mitzi,et al.  Templating and structural engineering in organic–inorganic perovskites , 2001 .

[22]  G. Papavassiliou,et al.  Three- and low-dimensional inorganic semiconductors , 1997 .

[23]  David B. Mitzi,et al.  Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3 , 1995 .

[24]  Yukari Takahashi Charge-transport in Tin-iodide Perovskite Ch 3 Nh 3 Sni 3 : Origin of High Conductivity † , 2022 .