Difference operators for wreath Macdonald polynomials
暂无分享,去创建一个
[1] Andrei Neguct. Quantum toroidal and shuffle algebras , 2013, Advances in Mathematics.
[2] M. Finkelberg. Wreath Macdonald polynomials and the categorical , 2014 .
[3] B. Feigin,et al. Equivariant K-theory of Hilbert schemes via shuffle algebra , 2009, 0904.1679.
[4] M. Shimozono,et al. Quiver Hall–Littlewood functions and Kostka–Shoji polynomials , 2017, Pacific Journal of Mathematics.
[5] K. Miki. Toroidal Braid Group Action and an Automorphism of Toroidal Algebra Uq(sln+1,tor) (n ≥ 2) , 1999 .
[6] Mark Haiman,et al. Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.
[7] On the K-theory of the cyclic quiver variety , 1999, math/9902091.
[8] Macdonald functions associated to complex reflection groups , 2002, math/0208061.
[9] Mark Haiman,et al. Combinatorics, symmetric functions, and Hilbert schemes , 2002 .
[10] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[11] R. Guralnick,et al. Special issue celebrating the 80th birthday of Robert Steinberg , 2003 .
[12] G. James,et al. The Representation Theory of the Symmetric Group , 2009 .
[13] P. Mladenovic. Combinatorics , 2019, Problem Books in Mathematics.
[14] I. Gordon,et al. Edinburgh Research Explorer Quiver Varieties, Category O for Rational Cherednik Algebras, and Hecke Algebras , 2007 .