Content zooming and exploration for mobile maps

��� In the context of the development of mobile map applications with capabilities for map generalization and abstraction, we propose a methodology for content exploration that uses content zooming as a technique to change the degree of abstraction of map content independently of the map scale. We concentrate on „foreground data‖ (rather than the base map, or map background), and more precisely on POI data and thus on point generalisation. Content zooming provides the user with the capability to change the amount and the granularity of foreground information presented, while keeping the geometric map scale the same. Content zooming allows overriding the effects of ‗standard‘ map generalisation, focusing on optimised content representation to aid the information seeking task of a mobile user. It is thus complementary to map generalisation. Three cases of content zooming operations are distinguished: two cases apply changes to the amount of foreground data presented, while the third case changes the granularity of the foreground data. The paper defines these cases and proposes technical solutions for each of these, illustrating them with examples from a research prototype.

[1]  Ross Purves,et al.  Automated Displacement for Large Numbers of Discrete Map Objects , 2001, Algorithmica.

[2]  P. V. Oosterom Variable-scale Topological Data Structures Suitable for Progressive Data Transfer: The GAP- face Tree and GAP-edge Forest , 2005 .

[3]  Robert Weibel,et al.  Generalization, On-the-Fly , 2008, Encyclopedia of GIS.

[4]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[5]  Maria Francesca Costabile,et al.  Proceedings of the working conference on Advanced visual interfaces , 1998, AVI.

[6]  R. Weibel,et al.  Generalisation of point data for mobile devices: , 2010 .

[7]  P E Crease,et al.  Designing usable cartographic representations of geographic relevance for LBS users , 2011 .

[8]  Alan M. MacEachren,et al.  Exploratory cartographic visualization: advancing the agenda , 1997 .

[9]  Jonathan Raper Geographic relevance , 2007, J. Documentation.

[10]  Barbara P. Buttenfield,et al.  Mastering map scale: balancing workloads using display and geometry change in multi-scale mapping , 2010, GeoInformatica.

[11]  P. V. Oosterom,et al.  Towards a true vario-scale structure supporting smooth-zoom , 2011 .

[12]  Stefano De Sabbata,et al.  Geographic relevance: different notions of geographies and relevancies , 2011, SIGSPACIAL.

[13]  L. Tiina Sarjakoski,et al.  A Mapping Function for Variable-Scale Maps in Small-Display Cartography , 2002 .

[14]  Alexander Zipf,et al.  Using Focus Maps to Ease Map Reading - Developing Smart Applications for Mobile Devices , 2002, Künstliche Intell..

[15]  Daniel A. Keim,et al.  Generalized Scatter Plots , 2010, Inf. Vis..

[16]  F. Töpfer,et al.  The Principles of Selection , 1966 .

[17]  Zhilin Li,et al.  Integration of Cognition-based Content Zooming and Progressive Visualization for Mobile-based Navigation , 2009 .

[18]  George Furnas,et al.  The FISHEYE view: A new look at structured files , 1986, CHI 1986.

[19]  Robert Weibel,et al.  Improving Automated Generalisation for On- Demand Web Mapping by Multiscale Databases , 2002 .

[20]  Daisuke Yamamoto,et al.  Focus+Glue+Context: an improved fisheye approach for web map services , 2009, GIS.