Structural diversity of domain superfamilies in the CATH database.

[1]  A. Lesk,et al.  How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. , 1980, Journal of molecular biology.

[2]  A M Lesk,et al.  Evolution of proteins formed by beta-sheets. II. The core of the immunoglobulin domains. , 1982, Journal of molecular biology.

[3]  A. Lesk,et al.  The relation between the divergence of sequence and structure in proteins. , 1986, The EMBO journal.

[4]  W R Taylor,et al.  Protein structure alignment. , 1989, Journal of molecular biology.

[5]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[6]  P. Argos,et al.  Analysis of insertions/deletions in protein structures. , 1992, Journal of molecular biology.

[7]  Joel L. Sussman,et al.  The α/β hydrolase fold , 1992 .

[8]  T. P. Flores,et al.  Comparison of conformational characteristics in structurally similar protein pairs , 1993, Protein science : a publication of the Protein Society.

[9]  P. Rowland,et al.  The three-dimensional structure of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides refined at 2.0 A resolution. , 1994, Structure.

[10]  G J Barton,et al.  Structural features can be unconserved in proteins with similar folds. An analysis of side-chain to side-chain contacts secondary structure and accessibility. , 1994, Journal of molecular biology.

[11]  J C Sacchettini,et al.  Three-dimensional structure of Escherichia coli dihydrodipicolinate reductase. , 1995, Biochemistry.

[12]  P. Willett,et al.  Biotin carboxylase comes into the fold , 1996, Nature Structural Biology.

[13]  D R Flower,et al.  The lipocalin protein family: structure and function. , 1996, The Biochemical journal.

[14]  M. Murphy,et al.  Structural comparison of cupredoxin domains: Domain recycling to construct proteins with novel functions , 1997, Protein science : a publication of the Protein Society.

[15]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[16]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[17]  K. Acharya,et al.  Structural basis for the recognition of carbohydrates by human galectin-7. , 1998, Biochemistry.

[18]  C. Orengo CORA—Topological fingerprints for protein structural families , 2008, Protein science : a publication of the Protein Society.

[19]  W. Pearson,et al.  Evolution of protein sequences and structures. , 1999, Journal of molecular biology.

[20]  Amos Bairoch,et al.  The ENZYME database in 2000 , 2000, Nucleic Acids Res..

[21]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[22]  Kenji Mizuguchi,et al.  Analysis of conservation and substitutions of secondary structure elements within protein superfamilies , 2000, Bioinform..

[23]  Frances M. G. Pearl,et al.  The CATH Dictionary of Homologous Superfamilies (DHS): a consensus approach for identifying distant structural homologues. , 2000, Protein engineering.

[24]  N. Grishin Fold change in evolution of protein structures. , 2001, Journal of structural biology.

[25]  Annabel E. Todd,et al.  Evolution of function in protein superfamilies, from a structural perspective. , 2001, Journal of molecular biology.

[26]  B. Henrissat,et al.  The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. , 2001, Structure.

[27]  Rolf Apweiler,et al.  Functional Information in SWISS-PROT: the Basis for Large-scale Characterisation of Protein Sequences , 2001, Briefings Bioinform..

[28]  Frances M. G. Pearl,et al.  Quantifying the similarities within fold space. , 2002, Journal of molecular biology.

[29]  Frances M. G. Pearl,et al.  Recognizing the fold of a protein structure , 2003, Bioinform..

[30]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[31]  Janet M. Thornton,et al.  Automatic inference of protein quaternary structure from crystals , 2003 .

[32]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[33]  Arne Skerra,et al.  Lipocalins in drug discovery: from natural ligand-binding proteins to "anticalins". , 2005, Drug discovery today.

[34]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2005, Nucleic Acids Res..

[35]  Ian Sillitoe,et al.  Assessing strategies for improved superfamily recognition , 2005, Protein science : a publication of the Protein Society.

[36]  Frances M. G. Pearl,et al.  The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis , 2004, Nucleic Acids Res..

[37]  C. Orengo,et al.  Protein families and their evolution-a structural perspective. , 2005, Annual review of biochemistry.

[38]  L. T. Hunt,et al.  Evolution of protein complexity: The blue copper-containing oxidases and related proteins , 2006, Journal of Molecular Evolution.