The neurotransmitters and postsynaptic actions of callosally projecting neurons

[1]  J. Coyle,et al.  Synaptosomal Transport of Radiolabel from N‐Acetyl‐Aspartyl‐[3H]Glutamate Suggests a Mechanism of Inactivation of an Excitatory Neuropeptide , 1986, Journal of neurochemistry.

[2]  B. Payne,et al.  Role of corpus callosum in functional organization of cat striate cortex. , 1984, Journal of neurophysiology.

[3]  H. Swadlow,et al.  Efferent neurons and suspected interneurons in second somatosensory cortex of the awake rabbit: receptive fields and axonal properties. , 1991, Journal of neurophysiology.

[4]  S G Waxman,et al.  Small-diameter nonmyelinated axons in the primate corpus callosum. , 1980, Archives of neurology.

[5]  K. Krnjević,et al.  An inhibitory process in the cerebral cortex , 1966, The Journal of physiology.

[6]  A. Peters,et al.  Symmetric synapses formed by callosal afferents in rat visual cortex , 1992, Brain Research.

[7]  W. Cumming An anatomical review of the corpus callosum. , 1970, Cortex; a journal devoted to the study of the nervous system and behavior.

[8]  H. T. Chang Interaction of evoked cortical potentials. , 1953, Journal of neurophysiology.

[9]  G. Collingridge,et al.  Excitatory amino acid receptors in the vertebrate central nervous system. , 1989, Pharmacological reviews.

[10]  E. White,et al.  Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cortex , 1993, The Journal of comparative neurology.

[11]  Patrick L. McGeer,et al.  Molecular Neurobiology of the Mammalian Brain , 1978, Springer US.

[12]  Termination of callosal afferents onto identified callosal projection neurons in the primary motor cortex of the mouse , 1984, Neuroscience Letters.

[13]  Peripheral and transcallosal reactivity of neurons sampled from the face subdivision of the cortical area , 1972 .

[14]  E. White Cortical Circuits: Synaptic Organization of the Cerebral Cortex , 1989 .

[15]  M. Geffard,et al.  Glycine neurons in the brain and spinal cord. Antibody production and immunocytochemical localization , 1986, Brain Research.

[16]  Commissurotomy studies in animals , 1990 .

[17]  S. Tieman,et al.  N-acetylaspartylglutamate immunoreactivity in neurons of the cat's visual system , 1987, Brain Research.

[18]  W. Bondareff,et al.  Uptake of exogenous norepinephrine from corpus callosum by neurons of the cingulate cortex. , 1972, Experimental neurology.

[19]  N. Cook,et al.  Callosal inhibition: the key to the brain code. , 1984, Behavioral science.

[20]  L. Slomianka Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat , 1992, Neuroscience.

[21]  E. Jones,et al.  Neurotransmitters in the cerebral cortex. , 1986, Journal of neurosurgery.

[22]  A. N. van den Pol,et al.  Glycine and glycine receptor immunoreactivity in brain and spinal cord , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  H. Swadlow Properties of antidromically activated callosal neurons and neurons responsive to callosal input in rabbit binocular cortex. , 1974, Experimental neurology.

[24]  K Matsunami,et al.  Effects of stimulation of corpus callosum on precentral neuron activity in the awake monkey. , 1984, Journal of neurophysiology.

[25]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[26]  I. Divac,et al.  Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain , 1981, Neuroscience.

[27]  A. Peters,et al.  Enigmatic bipolar cell of rat visual cortex , 1988, The Journal of comparative neurology.

[28]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[29]  S. Levay,et al.  Morphological and immunocytochemical observations on the visual callosal projections in the cat , 1988, The Journal of comparative neurology.

[30]  S. C. Feldman,et al.  Somatostatin (SRIF)‐like immunoreactivity in subcortical and cortical visual centers of the rat , 1985, The Journal of comparative neurology.

[31]  C. Shatz Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats , 1977, The Journal of comparative neurology.

[32]  D. Prince,et al.  Transcallosal effects of a cortical epileptiform focus , 1975, Brain Research.

[33]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[34]  A. Thomson A magnesium‐sensitive post‐synaptic potential in rat cerebral cortex resembles neuronal responses to N‐methylaspartate. , 1986, The Journal of physiology.

[35]  H. Karten,et al.  Pyramidal neurons of the rat cerebral cortex, immunoreactive to nicotinic acetylcholine receptors, project mainly to subcortical targets , 1992, The Journal of comparative neurology.

[36]  A. Peters,et al.  The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): A golgi‐electron microscopic study , 1985, The Journal of comparative neurology.

[37]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[38]  H. Takagi,et al.  Histaminergic axons in the neostriatum and cerebral cortex of the rat: a correlated light and electron microscopic immunocytochemical study using histidine decar☐ylase as a marker , 1986, Brain Research.

[39]  H. Künzle,et al.  Selective uptake and transport of label within three identified neuronal systems after injection of 3H‐GABA into the pigeon optic tectum: An autoradiographic and golgi study , 1976, The Journal of comparative neurology.

[40]  A. Peters,et al.  Proliferation of thalamic afferents in cerebral cortex altered by callosal deafferentation , 1985, Journal of neurocytology.

[41]  A. Peters,et al.  Transcallosal non‐pyramidal cell projections from visual cortex in the cat , 1990, The Journal of comparative neurology.

[42]  P. Streit Selective retrograde labeling indicating the transmitter of neuronal pathways , 1980, The Journal of comparative neurology.

[43]  J. Burgunder,et al.  Cortical neurons expressing the cholecystokinin gene in the rat: Distribution in the adult brain, ontogeny, and some of their projections , 1990, The Journal of comparative neurology.

[44]  A. Elberger Selective Labeling of Visual Corpus Callosum Connections with Aspartate in Cat and Rat? , 1989, Visual Neuroscience.

[45]  J. DeFelipe,et al.  GABA—Peptide Neurons of the Primate Cerebral Cortex , 1987 .

[46]  Innocenti Gm,et al.  The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat , 1980 .

[47]  J. E. Vaughn,et al.  Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: A study of cholinergic neurons and synapses , 1985, The Journal of comparative neurology.

[48]  S. W. Davies,et al.  Neurochemical heterogeneity among corticofugal and callosal projections , 1989, Experimental Neurology.

[49]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  E. White,et al.  Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: Emphasis on intrinsic connections , 1991, The Journal of comparative neurology.

[51]  M. Cuénod,et al.  Selective retrograde transport of d-aspartate in spinal interneurons and cortical neurons of rats , 1982, Brain Research.

[52]  Giorgio M. Innocenti,et al.  Exuberant projection into the corpus callosum from the visual cortex of newborn cats , 1977, Neuroscience Letters.

[53]  G. Innocenti General Organization of Callosal Connections in the Cerebral Cortex , 1986 .

[54]  M. Fabri,et al.  Substance P‐containing pyramidal neurons in the cat somatic sensory cortex , 1992, The Journal of comparative neurology.

[55]  S. Hunt,et al.  Peptide-Containing Neurons of the Cerebral Cortex , 1984 .

[56]  Bogdan Dreher,et al.  Neuroanatomy of the Visual Pathways and Their Development , 1991 .

[57]  N. Gonatas,et al.  Transneuronally transported wheat germ agglutinin labels glia as well as neurons in the rat visual system , 1987, The Journal of comparative neurology.

[58]  T. Powell,et al.  A combined golgi-electron microscopic study of the synapses made by the proximal axon and recurrent collaterals of a pyramidal cell in the somatic sensory cortex of the monkey , 1981, Neuroscience.

[59]  A. Harvey A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat. , 1980, The Journal of physiology.

[60]  W. Singer,et al.  Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials , 1979, The Journal of comparative neurology.

[61]  J. Parnavelas Neurotransmitters in the cerebral cortex. , 1990, Progress in brain research.

[62]  P. Somogyi,et al.  Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  H. Jasper,et al.  RECURRENT COLLATERAL INHIBITION IN PYRAMIDAL TRACT NEURONS. , 1964, Journal of neurophysiology.

[64]  G. Collins,et al.  The release of endogenous amino acids from the rat visual cortex. , 1976, The Journal of physiology.

[65]  C. Shatz,et al.  Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons , 1987, Nature.

[66]  F. Bloom,et al.  The distribution and morphology of opioid peptide immunoreactive neurons in the cerebral cortex of rats , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  F. Mora,et al.  Glutamic Acid as a Putative Transmitter of the Interhemispheric Corticocortical Connections in the Rat , 1986, Journal of neurochemistry.

[68]  J. Winer,et al.  Commissural neurons in layer III of cat primary auditory cortex (AI): Pyramidal and non‐pyramidal cell input , 1985, The Journal of comparative neurology.

[69]  P. B. Cipolloni,et al.  The termination of callosal fibres in the auditory cortex of the rat. A combined Golgi-electron microscope and degeneration study , 1983, Journal of neurocytology.

[70]  H. Naito,et al.  Transcallosal excitatory postsynaptic potentials of fast and slow pyramidal tract cells in cat sensorimotor cortex. , 1970, Brain research.

[71]  J. Orem,et al.  Influence of antidromic callosal volleys on single units in visual cortex. , 1971, Experimental neurology.

[72]  B. Day,et al.  Interhemispheric inhibition of the human motor cortex. , 1992, The Journal of physiology.

[73]  H. Naito,et al.  Effect of polarizing currents on transcallosal postsynaptic potentials of cat pyramidal tract cells. , 1971, Brain research.

[74]  Karl Zilles,et al.  Glycine receptor immunoreactivity in rat and human cerebral cortex , 1991, Brain Research.

[75]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[76]  O. Lindvall,et al.  Distribution of putative neurotransmitters in the neocortex , 1979, Neuroscience.

[77]  Y. Ben-Ari,et al.  GABA: an excitatory transmitter in early postnatal life , 1991, Trends in Neurosciences.

[78]  J. Storm-Mathisen,et al.  First visualization of glutamate and GABA in neurones by immunocytochemistry , 1983, Nature.

[79]  E. G. Jones,et al.  Varieties and distribution of non‐pyramidal cells in the somatic sensory cortex of the squirrel monkey , 1975, The Journal of comparative neurology.

[80]  H. Killackey,et al.  Variability in the distribution of callosal projection neurons in the adult rat parietal cortex , 1984, Brain Research.

[81]  T. Ichikawa,et al.  Organization of choline acetyltransferase-containing structures in the forebrain of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[83]  G. Looney,et al.  Myelination of the corpus callosum in the cat: Time course, topography, and functional implications , 1986, The Journal of comparative neurology.

[84]  E. White,et al.  Synaptic connections of callosal projection neurons in the vibrissal region of mouse primary motor cortex: An electron microscopic/horseradish peroxidase study , 1986, The Journal of comparative neurology.

[85]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[86]  B. Vogt,et al.  Responses of cortical neurons to stimulation of corpus callosum in vitro. , 1982, Journal of neurophysiology.

[87]  N. Cook,et al.  Homotopic callosal inhibition , 1984, Brain and Language.

[88]  J. DeFelipe,et al.  Glutamate‐positive neurons and axon terminals in cat sensory cortex: A correlative light and electron microscopic study , 1989, The Journal of comparative neurology.

[89]  L. Garey,et al.  Pyramidal neurons are immunopositive for peptides, but not GABA, in the temporal cortex of the macaque monkey (Macaca fascicularis) , 1990, Brain Research.

[90]  Alan Peters,et al.  Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat , 1981, The Journal of comparative neurology.

[91]  J TOMASCH,et al.  Size, distribution, and number of fibres in the human Corpus Callosum , 1954, The Anatomical record.

[92]  E. R. Whittemore,et al.  An explanation for the purported excitation of piriform cortical neurons by N-acetyl-L-aspartyl-L-glutamic acid (NAAG). , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[93]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[94]  H J Ralston,et al.  Light and electron microscopic evidence of transneuronal labeling with WGA‐HRP to trace somatosensory pathways to the thalamus , 1985, The Journal of comparative neurology.

[95]  C. Li,et al.  Cortical intracellular synaptic potentials and direct cortical stimulation. , 1962, Journal of cellular and comparative physiology.

[96]  V. Braitenberg,et al.  Classification of Cortical Neurons , 1991 .

[97]  J. Storm-Mathisen,et al.  Glutamate‐ and GABA‐containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique , 1984, The Journal of comparative neurology.

[98]  Robert W. Dykes,et al.  Neurotransmitters and Cortical Function: From Molecules to Mind , 1988 .

[99]  J. Bolz,et al.  Morphological types of projection neurons in layer 5 of cat visual cortex , 1990, The Journal of comparative neurology.

[100]  R. H. Evans,et al.  Excitatory amino acid transmitters. , 1981, Annual review of pharmacology and toxicology.

[101]  T. Hökfelt,et al.  Neuropeptide coexistence in human cortical neurones , 1982, Nature.

[102]  J. Storm-Mathisen,et al.  Retrograde transport of d-[3H]aspartate in thalamocortical neurones , 1983, Neuroscience Letters.

[103]  P. Evans,et al.  The distribution of bovine pancreatic polypeptide/FMRFamide‐like immunoreactivity in the ventral nervous system of the locust , 1985, The Journal of comparative neurology.

[104]  E G Jones,et al.  Neuropeptide-containing neurons of the cerebral cortex are also GABAergic. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M Marín-Padilla,et al.  Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: A unifying theory , 1992, The Journal of comparative neurology.

[106]  J. Lund,et al.  The termination of callosal fibers in the paravisual cortex of the rat. , 1970, Brain research.

[107]  J. Parnavelas,et al.  Excitatory transmitter amino acid‐containing neurons in the rat visual cortex: A light and electron microscopic immunocytochemical study , 1989, The Journal of comparative neurology.

[108]  H. Jasper,et al.  Neurotransmitters and cortical function : from molecules to mind , 1988 .

[109]  S. Cajal Cajal on the cerebral cortex , 1988 .

[110]  M. Molnar,et al.  Cellular localization and laminar distribution of NMDAR1 mRNA in the rat cerebral cortex , 2004, The Journal of comparative neurology.

[111]  M. Brann,et al.  Localization of a family of muscarinic receptor mRNAs in rat brain , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  C. D. Stern,et al.  Handbook of Chemical Neuroanatomy Methods in Chemical Neuroanatomy. Edited by A. Bjorklund and T. Hokfelt. Elsevier, Amsterdam, 1983. Cloth bound, 548 pp. UK £140. (Volume 1 in the series). , 1986, Neurochemistry International.

[113]  Tadaharu Tsumoto,et al.  Excitatory amino acid transmitters and their receptors in neural circuits of the cerebral neocortex , 1990, Neuroscience Research.

[114]  F. Conti,et al.  Characterization of antisera to glutamate and aspartate. , 1988, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[115]  M. Natori,et al.  Choline acetyltransferase immunopositive pyramidal neurons in the rat frontal cortex , 1988, Brain Research.

[116]  F. Conti,et al.  Glutamate-positive neurons in the somatic sensory cortex of rats and monkeys , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[117]  P. Somogyi,et al.  Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat , 1983, Neuroscience.

[118]  Larry W. Swanson,et al.  Cajal on the Cerebral Cortex: An Annotated Translation of the Complete Writings , 1988 .

[119]  J. E. Vaughn,et al.  GABA Neurons in the Cerebral Cortex , 1984 .

[120]  L. Garey,et al.  Ultrastructure of visual callosal neurons in cat identified by retrograde axonal transport of horseradish peroxidase , 1981, Journal of neurocytology.

[121]  A. Cowey,et al.  Immunoreactivity for Taurine Characterizes Subsets of Glia, GABAergic and non‐GABAergic Neurons in the Neo‐ and Archicortex of the Rat, Cat and Rhesus Monkey: Comparison with Immunoreactivity for Homocysteic Acid , 1992, The European journal of neuroscience.

[122]  J. Parnavelas,et al.  Proportion of glutamate‐ and aspartate‐immunoreactive neurons in the efferent pathways of the rat visual cortex varies according to the target , 1992, The Journal of comparative neurology.

[123]  Stephen G. Waxman,et al.  Ultrastructure of visual callosal axons in the rabbit , 1976, Experimental Neurology.

[124]  M. Fabri,et al.  Numerous SP-positive pyramidal neurons in cat neocortex are glutamate-positive , 1992, Brain Research.

[125]  B. Katz Mechanisms of Synaptic Transmission , 1959 .

[126]  T. Wiesel,et al.  Patterns of synaptic input to layer 4 of cat striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  J. Trojanowski,et al.  The cells of origin of the corpus callosum in rat, cat and rhesus monkey. , 1974, Brain research.

[128]  G. Innocenti,et al.  Morphological correlates of visual field transformation in the corpus callosum , 1976, Neuroscience Letters.

[129]  P. Rakić,et al.  Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey , 1990, The Journal of comparative neurology.

[130]  R. Giuffrida,et al.  Glutamate and aspartate immunoreactivity in corticospinal neurons of rats , 1989, The Journal of comparative neurology.

[131]  J. DeFelipe,et al.  A study of tachykinin-immunoreactive neurons in monkey cerebral cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  B. Vogt,et al.  Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29 , 1981, The Journal of comparative neurology.

[133]  M. Berry,et al.  Ontogeny of interhemispheric evoked potentials in the rat: significance of myelination of the corpus callosum. , 1972, Experimental neurology.

[134]  C. G. Phillips,et al.  Actions of antidromic pyramidal volleys on single Betz cells in the cat. , 1959, Quarterly journal of experimental physiology and cognate medical sciences.

[135]  G. Spidalieri,et al.  Peripheral and transcallosal reactivity of neurons within SI and SII cortical areas. Segmental divisions , 1972 .

[136]  T. Powell,et al.  An experimental electron microscopic study of afferent connections to the primate motor and somatic sensory cortices. , 1979, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[137]  F. Conti,et al.  Glutamate immunoreactivity in rat cerebral cortex is reversibly abolished by 6-diazo-5-oxo-L-norleucine (DON), an inhibitor of phosphate-activated glutaminase. , 1994, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[138]  M. Tohyama,et al.  Regional distribution of cells expressing glycine receptor α 2 subunit mRNA in the rat brain , 1992, Brain Research.

[139]  B. Berger,et al.  Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development. , 1985, Brain research.

[140]  C. Bennett-Clarke,et al.  Distribution of somatostatin in the rat brain: Telencephalon and diencephalon , 1980, Brain Research.

[141]  J. Coyle,et al.  Hydrolysis of the Brain Dipeptide N‐Acetyl‐l‐Aspartyl‐l‐Glutamate: Subcellular and Regional Distribution, Ontogeny, and the Effect of Lesions on N‐Acetylated‐α‐Linked Acidic Dipeptidase Activity , 1988, Journal of neurochemistry.

[142]  B. L. Ginsborg THE PHYSIOLOGY OF SYNAPSES , 1964 .

[143]  H. Asanuma,et al.  Unitary study on evoked activity of callosal neurons and its effect on pyramidal tract cell activity on cats. , 1959, The Japanese journal of physiology.

[144]  G M Innocenti,et al.  Growth and reshaping of axons in the establishment of visual callosal connections. , 1981, Science.

[145]  K. Toyama,et al.  Convergence of specific visual and commissural impulses upon inhibitory interneurones in cat's visual cortex , 1976, Neuroscience.

[146]  T. Powell,et al.  The intrinsic, association and commissural connections of area 17 on the visual cortex. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[147]  Redvers N. Ironside,et al.  The Corpus Callosum and Its Tumours , 1930, Edinburgh medical journal.

[148]  E. Soriano,et al.  Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity , 1991, Journal of neurocytology.

[149]  M. Fabri,et al.  Immunocytochemical evidence for glutamatergic cortico-cortical connections in monkeys , 1988, Brain Research.

[150]  G. Innocenti,et al.  Is there a genuine exuberancy of callosal projections in development? A quantitative electron microscopic study in the cat , 1983, Neuroscience Letters.

[151]  P. Streit Glutamate and Aspartate as Transmitter Candidates for Systems of the Cerebral Cortex , 1984 .

[152]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[153]  J. Winer Neurons accumulating [3Hgamma-aminobutyric acid (GABA) in supragranular layers of cat primary auditory cortex (AI) , 1986, Neuroscience.

[154]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[155]  C. Metz,et al.  Colchicine enhances mRNAs encoding the precursor of calcitonin gene-related peptide in brainstem motoneurons , 1991, Neuroscience.

[156]  P. Emson,et al.  Colchicine-induced expression of proneurotensin mRNA in rat striatum and hypothalamus. , 1991, Brain research. Molecular brain research.

[157]  H. Asanuma,et al.  Effects of transcallosal volleys on pyramidal tract cell activity of cat. , 1962, Journal of neurophysiology.

[158]  K. Toyama,et al.  Synaptic action of commissural impulses upon association efferent cells in cat visual cortex. , 1969, Brain research.

[159]  A. Lopez-Medina,et al.  Targets and Laminar Distribution of Projection Neurons with ‘Inverted’ Morphology in Rabbit Cortex , 1991, The European journal of neuroscience.

[160]  F. Bloom,et al.  Immunohistochemical distribution of pro-somatostatin-related peptides in cerebral cortex , 1983, Brain Research.

[161]  G. W. Hoesen,et al.  WGA-HRP as a transneuronal marker in the visual pathways of monkey and rat , 1982, Brain Research.

[162]  J. DeFelipe,et al.  Demonstration of glutamate-positive axon terminals forming asymmetric synapses in cat neocortex , 1988, Brain Research.

[163]  J C Eccles,et al.  Developing concepts of the synapses , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[164]  S. Tieman,et al.  N‐acetylaspartylglutamate immunoreactivity in neurons of the monkey's visual pathway , 1991, The Journal of comparative neurology.

[165]  H. Swadlow Efferent neurons and suspected interneurons in S-1 forelimb representation of the awake rabbit: receptive fields and axonal properties. , 1990, Journal of neurophysiology.

[166]  M. Fabri,et al.  Glutamate-positive corticocortical neurons in the somatic sensory areas I and II of cats , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[167]  B. Schofield,et al.  Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat , 1988, The Journal of comparative neurology.

[168]  D. Whitteridge,et al.  Degeneration of layer III pyramidal cells in area 18 following destruction of callosal input , 1976, Brain Research.

[169]  J. Kelly,et al.  Simultaneous recordings from pericruciate pyramidal tract and non-pyramidal tract neurons; response to stimulation of inhibitory pathways. , 1974, Brain research.

[170]  H. Thoenen,et al.  Cholinergic neurons in the rat cerebral cortex demonstrated by immunohistochemical localization of choline acetyltransferase , 1983, Neuroscience Letters.

[171]  M. Segraves,et al.  The distribution of the cells of origin of callosal projections in cat visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[172]  S. Hendry,et al.  Thalamic inputs to identified commissural neurons in the monkey somatic sensory cortex , 1983, Journal of neurocytology.

[173]  K. Shoumura An attempt to relate the origin and distribution of commissural fibers to the presence of large and medium pyramids in layer III in the cat's visual cortex. , 1974, Brain research.

[174]  H. T. Chang,et al.  Cortical response to activity of callosal neurons. , 1953, Journal of neurophysiology.

[175]  H. Killackey,et al.  Choline acetyltransferase-immunoreactive neurons in fetal monkey cerebral cortex. , 1987, Brain research.

[176]  C. Frederickson Neurobiology of zinc and zinc-containing neurons. , 1989, International review of neurobiology.

[177]  B. Berger,et al.  Tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex: a novel catecholaminergic group? , 1987, Neuroscience Letters.

[178]  A. Brancati,et al.  DISTRIBUTION OF N‐ACETYL‐ASPARTIC AND N‐ACETYL‐ASPARTYL‐GLUTAMIC ACIDS IN NERVOUS TISSUE * , 1965, Journal of neurochemistry.

[179]  A. Fairén,et al.  Transient GABA-like immunoreactive axons in the corpus callosum of perinatal rats , 1988, Neuroscience Letters.

[180]  J. O'leary,et al.  Structure of the area striata of the cat , 1941 .

[181]  T. Kennedy,et al.  CORTICAL UNIT ACTIVITY FOLLOWING TRANSCALLOSAL VOLLEYS , 1961 .

[182]  G. Berlucchi Anatomical and physiological aspects of visual functions of corpus callosum. , 1972, Brain research.

[183]  R. Maiman,et al.  CELLS OF ORIGIN OF FIBERS OF CORPUS CALLOSUM: EXPERIMENTAL AND PATHOLOGIC OBSERVATIONS , 1939 .

[184]  H. Swadlow,et al.  Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit , 1976, Experimental Neurology.

[185]  D. Reis,et al.  Light‐microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny , 1981, The Journal of comparative neurology.

[186]  J. D. Coulter,et al.  Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry , 1982, Brain Research.

[187]  F. Walberg,et al.  Aspartate-like and glutamate-like immunoreactivities in the inferior olive and climbing fibre system: A light microscopic and semiquantitative electron microscopic study in rat and baboon (Papio anubis) , 1990, Neuroscience.

[188]  K. Maekawa,et al.  Forms of spontaneous and evoked postsynaptic potentials of cortical nerve cells. , 1969, Progress in brain research.

[189]  P. Goldman-Rakic,et al.  Regional distribution of cholecystokinin receptors in primate cerebral cortex determined by in vitro receptor autoradiography , 1987, The Journal of comparative neurology.

[190]  G A Orban,et al.  Heterogeneity of GABAergic cells in cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[191]  C. T. Van Valkenburg,et al.  EXPERIMENTAL AND PATHOLOGICO-ANATOMICAL RESEARCHES ON THE CORPUS CALLOSUM , 1913 .

[192]  M. Colonnier Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. , 1968, Brain research.

[193]  R. Maciewicz,et al.  Afferents to the lateral suprasylvian gyrus of the cat traced with horseradish peroxidase. , 1974, Brain research.

[194]  M. Colonnier,et al.  A laminar analysis of the number of round‐asymmetrical and flat‐symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat , 1985, The Journal of comparative neurology.

[195]  T. Hökfelt Neuropeptides in perspective: The last ten years , 1991, Neuron.

[196]  T. Powell,et al.  An electron microscopic study of the laminar pattern and mode of termination of afferent fibre pathways in the somatic sensory cortex of the cat. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[197]  M. Carpenter The cerebral cortex , 1976 .

[198]  P. Barbaresi,et al.  D‐[3H]aspartate retrograde labelling of callosal and association neurones of somatosensory areas I and II of cats , 1987, The Journal of comparative neurology.

[199]  M. Cynader,et al.  Enrichment of glutamate in zinc-containing terminals of the cat visual cortex. , 1992, Neuroreport.

[200]  W. Singer,et al.  Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. , 1975, Journal of neurophysiology.

[201]  M. Wong-Riley,et al.  Demonstration of geniculocortical and callosal projection neurons in the squirrel monkey by means of retrograde axonal transport of horseradish peroxidase. , 1974, Brain research.

[202]  K A Jones,et al.  Muscarinic M3 receptors inhibit a leak conductance in rat corticocallosal neurons. , 1992, Neuroreport.

[203]  G M Innocenti,et al.  The development of the corpus callosum in cats: A light‐ and electron‐ microscopic study , 1988, The Journal of comparative neurology.

[204]  K. Shoumura,et al.  Structural organization of ‘callosal’ OBg in human corpus callosum agenesis , 1975, Brain Research.