PAIRED CALIBRATIONS APPLIED TO SOAP FILMS, IMMISCIBLE FLUIDS, AND SURFACES OR NETWORKS MINIMIZING OTHER NORMS
暂无分享,去创建一个
[1] M. Fréchet. Sur La Definition Axiomatique D'Une Classe D'Espaces Vectoriels Distancies Applicables Vectoriellement Sur L'Espace de Hilbert , 1935 .
[2] G. Hardy,et al. What is Mathematics? , 1942, Nature.
[3] Leonard M. Blumenthal,et al. Theory and applications of distance geometry , 1954 .
[4] Branko Grünbaum. Strictly antipodal sets , 1963 .
[5] M. Hanan,et al. On Steiner’s Problem with Rectilinear Distance , 1966 .
[6] E. Cockayne. On the Steiner Problem , 1967, Canadian Mathematical Bulletin.
[7] H. Fédérer. Geometric Measure Theory , 1969 .
[8] C. Petty,et al. Equilateral sets in Minkowski spaces , 1971 .
[9] J. Taylor,et al. The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces , 1976 .
[10] J. Taylor. The structure of singularities in solutions to ellipsoidal variational problems with constraints in R3 , 1976 .
[11] F. Almgren,et al. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints , 1975 .
[12] F. Almgren,et al. The Geometry of Soap Films and Soap Bubbles , 1976 .
[13] B. White. Existence of least-area mappings of N-dimensional domains , 1983 .
[14] Richard K. Guy,et al. An Olla-Podrida of Open Problems, Often Oddly Posed , 1983 .
[15] G. Chakerian,et al. The Fermat problem in Minkowski spaces , 1985 .
[16] B. White. Regularity of the singular sets in immiscible fluid interfaces and solutions to other plateau-type problems , 1986 .
[17] F. Morgan. Area-minimizing surfaces, faces of Grassmannians, and calibrations , 1988 .
[18] F. Morgan. Geometric Measure Theory: A Beginner's Guide , 1988 .
[19] F. Morgan. Size-minimizing rectifiable currents , 1989 .
[20] F. Morgan. Calibrations and New Singularities in Area-minimizing Surfaces: A Survey , 1990 .
[21] F. Morgan. Soap Bubbles and Soap Films a , 1990 .
[22] Frank Morgan. Minimal surfaces, crystals, and norms on Rn , 1991, SCG '91.
[23] F. Morgan. The cone over the Clifford torus in R4 isΦ-minimizing , 1991 .
[24] Mark Conger,et al. The structure of singularities in $\Phi$-minimizing networks in ${\bf R}^2$. , 1991 .
[25] K. Brakke. Minimal cones on hypercubes , 1991 .
[26] Frank Morgan,et al. Minimal Surfaces, Crystals, Shortest Networks, and Undergraduate Research , 1992 .
[27] Kenneth A. Brakke,et al. The Surface Evolver , 1992, Exp. Math..
[28] K. Brakke. Soap films and covering spaces , 1995 .
[29] M. Alfaro. Existence of shortest directed networks in ${\bf R}^2$. , 1995 .