Pines as Model Gymnosperms To Study Evolution, Wood Formation, and Perennial Growth

Pines provide a model system for the gymnosperms, an old and successful group of vascular plants that last shared a common ancestor with the angiosperms about 285 million years ago. Gymnosperms are distinct from angiosperms in their reproduction, development, metabolism, adaptations, and evolution. Pines cover vast areas of the globe, are one of the most important genera of forest trees, dominate the ecology of many temperate and subtropical forest ecosystems, and provide a major fraction of the world's wood. Here, we summarize many features of pine that make it a useful model for gymnosperms and woody plants. We also describe the influence of its reproductive system on methods for genetic analysis and the prospects for genomic studies and genetic engineering. Pines are limited as model systems by their long generation times, large size, large genomes, and the long time from fertilization to seed set.

[1]  G. Caetano-Anollés,et al.  DNA markers : protocols, applications, and overviews , 1997 .

[2]  N. Chua,et al.  A heuristic glance at the past of Arabidopsis genetics. , 1992 .

[3]  Claud L. Brown,et al.  Differentiation of Plantlets in Longleaf Pine (Pinus palustris Mill.) Tissue Cultured In vitro , 1975, Botanical Gazette.

[4]  R. Sederoff,et al.  RECENT ADVANCES IN UNDERSTANDING LIGNIN BIOSYNTHESIS. , 1998, Annual review of plant physiology and plant molecular biology.

[5]  B. Zobel,et al.  Applied Forest Tree Improvement , 1984 .

[6]  E. M. Gifford,et al.  Morphology and evolution of vascular plants , 1989 .

[7]  S. Strauss,et al.  Chloroplast DNA diversity among trees, populations and species in the California closed-cone pines (Pinus radiata, Pinus muricata and Pinus attenuata). , 1993, Genetics.

[8]  Christopher J. Biermann,et al.  Essentials of Pulping and Papermaking , 1993 .

[9]  T. Kondo,et al.  RAPD markers linked to a gene for resistance to pine needle gall midge in Japanese black pine (Pinus thunbergii) , 2000, Theoretical and Applied Genetics.

[10]  W. Martin,et al.  Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Mosseler,et al.  Low levels of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers , 1992 .

[12]  M. Devey,et al.  Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers , 1999, Theoretical and Applied Genetics.

[13]  M. Yanofsky Floral Meristems to Floral Organs: Genes Controlling Early Events in Arabidopsis Flower Development , 1995 .

[14]  R. Sederoff,et al.  Unexpected variation in lignin. , 1999, Current opinion in plant biology.

[15]  Prof. Dr. Lorin W. Roberts,et al.  Vascular Differentiation and Plant Growth Regulators , 1988, Springer Series in Wood Science.

[16]  H. Singh Embryology of gymnosperms , 1978 .

[17]  F. Allendorf,et al.  Frequencies of null alleles at enzyme Loci in natural populations of ponderosa and red pine. , 1982, Genetics.

[18]  Karyotype Analysis of the genus Pinus-Subgenus Pinus ' ) , 2022 .

[19]  H. Saedler,et al.  The golden decade of molecular floral development (1990-1999): A cheerful obituary , 1999, Developmental genetics.

[20]  M. Adams,et al.  Shotgun Sequencing of the Human Genome , 1998, Science.

[21]  E. Franklin Genetic Load in Loblolly Pine , 1972, The American Naturalist.

[22]  D. Remington,et al.  Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. , 2000, Genetics.

[23]  N. Burley,et al.  Mate Choice in Plants , 1983 .

[24]  J. S. Heslop-Harrison,et al.  The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Richardson,et al.  Ecology and biogeography of Pinus: an introduction , 1998 .

[26]  D. Clapham,et al.  Induction of hairy and normal roots on Picea abies, Pinus sylvestris and Pinus contorta by Agrobacterium rhizogenes , 1994 .

[27]  R. Sederoff,et al.  A Laccase Associated with Lignification in Loblolly Pine Xylem , 1993, Science.

[28]  R. Ennos,et al.  The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation , 1999 .

[29]  P. K. Gupta,et al.  Somatic proembryo formation and transient expression of a luciferase gene in Douglas fir and loblolly pine protoplasts , 1988 .

[30]  G. Namkoong,et al.  Unsound seeds in conifers: estimation of numbers of lethal alleles and of magnitudes of effects associated with the maternal parent , 1987 .

[31]  Ben Hui Liu,et al.  Statistical Genomics: Linkage, Mapping, and QTL Analysis , 1997 .

[32]  M Schena,et al.  Microarrays: biotechnology's discovery platform for functional genomics. , 1998, Trends in biotechnology.

[33]  E. Coen,et al.  floricaula: A homeotic gene required for flower development in antirrhinum majus , 1990, Cell.

[34]  R. Savidge Auxin and ethylene regulation of diameter growth in trees. , 1988, Tree physiology.

[35]  R. Vines Heat transfer through bark, and the resistance of trees to fire. , 1968 .

[36]  R. Savidge,et al.  Electrophoretic analysis of coniferyl alcohol oxidase and related laccases , 1994, Electrophoresis.

[37]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[38]  E. Lam,et al.  In Situ Detection of nDNA Fragmentation during the Differentiation of Tracheary Elements in Higher Plants , 1995, Plant physiology.

[39]  N. T. Mirov,et al.  The genus Pinus. , 1968 .

[40]  W. F. Watson,et al.  Physical properties of the oleoresin system of the four major southern pines , 1977 .

[41]  W. B. Critchfield,et al.  Geographic distribution of the pines of the world , 1966 .

[42]  H. Koltai,et al.  High throughput cellular localization of specific plant mRNAs by liquid-phase in situ reverse transcription-polymerase chain reaction of tissue sections. , 2000, Plant physiology.

[43]  R. Hodgetts,et al.  The development of RAPD and microsatellite markers in lodgepole pine (Pinus contorta var. latifolia) , 1998 .

[44]  B. Kreiser,et al.  Glacial refugia of limber pine (Pinus flexilis James) inferred from the population structure of mitochondrial DNA , 2000, Molecular ecology.

[45]  R. Sederoff,et al.  Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Neale,et al.  Conifer wood quality and marker-aided selection: a case study , 1992 .

[47]  R. Sederoff,et al.  Analysis of xylem formation in pine by cDNA sequencing. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Sederoff,et al.  Gene Transfer into Loblolly Pine by Agrobacterium tumefaciens , 1986, Bio/Technology.

[49]  P. Wilcox,et al.  Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D. Don. I. Genetic map with distorted markers , 1999, Theoretical and Applied Genetics.

[50]  R. Petit,et al.  Contribution of two-dimensional electrophoresis of proteins to maritime pine genetics , 1997 .

[51]  M. Hasebe,et al.  Characterization of MADS homeotic genes in the fern Ceratopteris richardii. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  B. Sundberg,et al.  A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen , 1997, Plant physiology.

[53]  K. R. Sporne Morphology of Gymnosperms , 1917, Nature.

[54]  R. Zahorchak,et al.  Characterization of microsatellite markers in eastern white pine. , 1996, Genome.

[55]  H. Amerson,et al.  Tissue Culture of Conifers Using Loblolly Pine as a Model , 1988 .

[56]  R. Sederoff,et al.  Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[57]  B. Sundberg,et al.  Auxin as a positional signal in pattern formation in plants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Chung-Jui Tsai,et al.  Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees , 1999, Nature Biotechnology.

[59]  S. Williams,et al.  Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Owens,et al.  Transient gene expression in pine pollen tubes following particle bombardment , 2000, Plant Cell Reports.

[61]  D. Neale,et al.  Codominant PCR-based markers for Pinus taeda developed from mapped cDNA clones , 1998, Theoretical and Applied Genetics.

[62]  J. Keeley,et al.  Evolution of life histories in Pinus , 1998 .

[63]  E. Coen,et al.  The war of the whorls: genetic interactions controlling flower development , 1991, Nature.

[64]  T. Kubisiak,et al.  A Genetic Linkage Map of Longleaf Pine (Pinus palustris Mill.) Based on Random Amplified Polymorphic DNAs , 1994 .

[65]  J. Hamrick,et al.  Effects of life history traits on genetic diversity in plant species , 1996 .

[66]  R. Sederoff,et al.  Differential expression of genes encoding cell wall proteins in vascular tissues from vertical and bent loblolly pine trees. , 2000, Tree physiology.

[67]  E. Mellerowicz,et al.  PRFLL– a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia , 1998, Planta.

[68]  R. Schmid,et al.  Wood Anatomy of Pinus Longaeva (Bristlecone Pine) and the Sustained Length-on-Age Increase of its Tracheids , 1986 .

[69]  R. Gardner,et al.  Characteristics of single- and multi-copy microsatellites from Pinus radiata , 1998, Theoretical and Applied Genetics.

[70]  Elliot M. Meyerowitz,et al.  Arabidopsis, a useful weed , 1989, Cell.

[71]  Ronald R. Sederoff,et al.  The role of of laccase in lignification , 1993 .

[72]  Donald R. Currey An Ancient Bristlecone Pine Stand in Eastern Nevada , 1965 .

[73]  T. E. Timell Compression Wood in Gymnosperms , 1986 .

[74]  E. Sjöström,et al.  Wood Chemistry: Fundamentals and Applications , 1981 .

[75]  M. Devey,et al.  Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. Leal Genetics and Analysis of Quantitative Traits , 2001 .

[77]  R. Sederoff,et al.  Genetic engineering of wood , 1991 .

[78]  C. J. Chamberlain Gymnosperms: Structure and Evolution , 1935 .

[79]  A. Mosseler,et al.  Genetic variation in red pine (Pinus resinosa) revealed by RAPD and RAPD-RFLP analysis , 1997 .

[80]  N. Burley,et al.  Mate choice in plants: tactics, mechanisms and consequences. , 1983 .

[81]  K. W. Dorman The genetics and breeding of southern pines , 1976 .

[82]  B. Sundberg,et al.  Indole-3-acetic acid controls cambial growth in scots pine by positional signaling , 1998, Plant physiology.

[83]  O. Savolainen,et al.  Comparison of homology and linkage of random amplified polymorphic DNA (RAPD) markers between individual trees of Scots pine (Pinus sylvestris L.) , 1999 .

[84]  R. Gardner,et al.  A large family of TM3 MADS-box cDNAs in Pinus radiata includes two members with deletions of the conserved K domain , 1998 .

[85]  Paul J. Kramer,et al.  The Physiological Ecology of Woody Plants , 1991 .

[86]  C. W. Ferguson,et al.  Bristlecone Pine: Science and Esthetics , 1968, Science.

[87]  S. Lev-Yadun Aggregated Cones in Pinus Halepensis , 1992 .

[88]  A. C. Matheson,et al.  Age-related changes in the expression of QTLs for growth in radiata pine seedlings , 1998, Theoretical and Applied Genetics.

[89]  R. Newton,et al.  Genome size and environmental factors in the genus Pinus , 1993 .

[90]  R. Ennos,et al.  Multiple origins for Scots pine (Pinus sylvestris L.) in Scotland: evidence from mitochondrial DNA variation , 1998, Heredity.

[91]  H. Fowells Silvics of forest trees of the United States. , 1965 .

[92]  J. Burley,et al.  The wood properties of radiata pine. , 1983 .

[93]  J. Palmer,et al.  Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[94]  G. Furnier,et al.  Pinus banksiana has at least seven expressed alcohol dehydrogenase genes in two linked groups. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[95]  A. ALLSOPP,et al.  Plant Anatomy , 1966, Nature.

[96]  J. Owens,et al.  Sex expression in gymnosperms , 1990 .

[97]  M. Conkle Isozyme variation and linkage in six conifer species. , 1981 .

[98]  F. Yeh,et al.  Genomic mapping of Pinus sylvestris (L.) using random amplified polymorphic DNA markers. , 1995 .

[99]  R. Trethewey,et al.  Metabolic profiling: a Rosetta Stone for genomics? , 1999, Current opinion in plant biology.

[100]  J. S. Heslop-Harrison,et al.  Karyotype of Slash Pine (Pinus elliottii var. elliottii) Using Patterns of Fluorescence in situ Hybridization and Fluorochrome Banding , 1995 .

[101]  D. Govindaraju,et al.  Taxonomic patterns and inheritance of chloroplast DNA variation in a survey of Pinusechinata, Pinuselliottii, Pinuspalustris, and Pinustaeda , 1992 .

[102]  P. Brown,et al.  A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. , 1996, Genome research.

[103]  D. Smith,et al.  Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don , 1998, Plant Cell Reports.

[104]  R. Sederoff,et al.  Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[105]  R. Sederoff,et al.  Abnormal lignin in a loblolly pine mutant. , 1997, Science.

[106]  T. Kozlowski Growth and Development of Trees , 1971 .

[107]  R. Sederoff,et al.  Molecular Markers, Forest Genetics, and Tree Breeding , 1996 .

[108]  H. Amerson,et al.  Tissue culture process for the clonal production of loblolly pine plantlets , 1981 .

[109]  A. Groover,et al.  Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. , 1994, Genetics.

[110]  R. Pharis,et al.  Control of Sex Expression in Conifers , 1987 .

[111]  R. Joly,et al.  Linkage relationships among twelve allozyme loci in loblolly pine , 1980 .

[112]  D. Neale,et al.  Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement , 1991 .

[113]  R. Whetten,et al.  Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda , 1999, Theoretical and Applied Genetics.

[114]  R. Sederoff,et al.  Modified Lignin and Delignification with a CAD-Deficient Loblolly Pine , 1999 .

[115]  I. S. Goldstein,et al.  Wood structure and composition , 1991 .

[116]  A. Mouradov,et al.  Family of MADS-Box genes expressed early in male and female reproductive structures of monterey pine , 1998, Plant physiology.

[117]  Philip R. Larson,et al.  The Vascular Cambium: Development and Structure , 1994 .

[118]  Robert A. Megraw,et al.  Wood Quality Factors in Loblolly Pine: The Influence of Tree Age, Position in Tree, and Cultural Practice on Wood Specific Gravity, Fiber Length, and Fibril Angle , 1997 .

[119]  D. Neale,et al.  Complex gene families in pine genomes , 1997 .

[120]  R. Sederoff,et al.  Inheritance and Evolution of Conifer Organelle Genomes , 1988 .

[121]  R. Lande,et al.  Limitations of molecular-marker-aided selection in forest tree breeding , 1992 .

[122]  P. Jalonen,et al.  Somatic embryogenesis of Pinus sylvestris , 1996 .

[123]  R. Sederoff,et al.  Development of a DNA Transfer System for Pines , 1988 .

[124]  S. Somerville,et al.  Plant functional genomics. , 1999, Science.

[125]  J. MacKay,et al.  Average effect of a mutation in lignin biosynthesis in loblolly pine , 1999, Theoretical and Applied Genetics.

[126]  O. Savolainen,et al.  Inbreeding Depression in Conifers: Implications for Breeding Strategy , 1996, Forest Science.

[127]  Dr. W. E. Hillis Heartwood and Tree Exudates , 1987, Springer Series in Wood Science.

[128]  R. Price Phylogeny and systematics of Pinus , 1998 .

[129]  R. B. Hall,et al.  DNA REASSOCIATION KINETICS OF FOUR CONIFERS , 1980 .

[130]  Ronald D. Hatfield,et al.  Solution state NMR of lignins , 1999 .

[131]  G. Theißen,et al.  A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. , 1999, Developmental genetics.

[132]  S. Fink Pathological and regenerative plant anatomy , 1999 .

[133]  C. Nelson,et al.  Linkage mapping and genome length in eastern white pine (Pinus strobus L.) , 1997, Theoretical and Applied Genetics.

[134]  M. Bollmann,et al.  BUD MORPHOGENESIS OF PINUS RADIATA IN NEW ZEALAND 1: THE INITIATION AND EXTENSION OF THE LEADING SHOOT OF ONE CLONE AT TWO SITES , 1976 .

[135]  K. Ueda,et al.  Extensive Mitochondrial Introgression from Pinus pumila to P. parviflora var. pentaphylla (Pinaceae) , 1999, Journal of Plant Research.

[136]  Highly Efficient Transformation and Regeneration of Transgenic Aspen Plants Through Shoot-Bud Formation in Root Culture, and Transformation of Pinus Halepensis , 1996 .

[137]  Y. Linhart,et al.  DIRECT AND INDIRECT ESTIMATES OF SEED VERSUS POLLEN MOVEMENT WITHIN A POPULATION OF PONDEROSA PINE , 1998, Evolution; international journal of organic evolution.

[138]  P. T. Higuchi Biochemistry and Molecular Biology of Wood , 1997, Springer Series in Wood Science.

[139]  I. Ferguson,et al.  Major changes in chromatin condensation suggest the presence of an apoptotic pathway in plant cells. , 1998, Experimental cell research.

[140]  Adya P. Singh,et al.  Multiplication of meristematic tissue: a new tissue culture system for radiata pine , 1988 .

[141]  C. Plomion,et al.  Genetic analysis of needle proteins in maritime pine. 1. Mapping dominant and codominant protein markers assayed on diploid tissue, in a haploid-based genetic map , 1997 .

[142]  Dr. Philip R. Larson,et al.  The Vascular Cambium , 1994, Springer Series in Wood Science.

[143]  C. Durel,et al.  Genomic mapping in Pinus pinaster (maritime pine) using RAPD and protein markers , 1995, Heredity.

[144]  D. Neale,et al.  A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. , 1999, Genetics.

[145]  P. Keim,et al.  A Genetic linkage map of Pinyon pine (Pinus edulis) based on amplified fragment length polymorphisms , 1998, Theoretical and Applied Genetics.

[146]  Understanding the genetic architecture of a quantitative trait in gymnosperms by genotyping haploid megagametophytes , 1999, Theoretical and Applied Genetics.

[147]  J. Palmer,et al.  CHAPTER 2 – Plastid Chromosomes: Structure and Evolution , 1991 .

[148]  C. Plomion,et al.  Genetic analysis of needle proteins in maritime pine. 2. Variation of protein accumulation , 1999 .

[149]  R. Sederoff,et al.  Extended Host Range of Agrobacterium tumefaciens in the Genus Pinus. , 1990, Plant physiology.

[150]  K. Sax,et al.  Chromosome number and morphology in the conifers , 1933 .

[151]  J. R. Sprague,et al.  Juvenile Wood in Forest Trees , 1998, Springer Series in Wood Science.

[152]  C. Plomion,et al.  Recombination rate differences for pollen parents and seed parents in Pinus pinaster , 1996, Heredity.

[153]  R. Sederoff,et al.  Genetic Regulation of Lignin Biosynthesis and the Potential Modification of Wood by Genetic Engineering in Loblolly Pine , 1994 .

[154]  D. Neale,et al.  Paternal inheritance of chloroplast DNA in Douglas-fir , 1986 .

[155]  E. Rigolot,et al.  The ecophysiological and growth responses of Aleppo pine (Pinus halepensis) to controlled heating applied to the base of the trunk , 1996 .