An In Vitro Study of Dural Lesions Produced by 25-Gauge Quincke and Whitacre Needles Evaluated by Scanning Electron Microscopy

Background and Objectives A study using scanning electron microscopy showed that although the laminas forming the dura mater are concentric and parallel to the surface of the medulla, the fiber layers' orientations are different in each sub-lamina, dispelling the conventional knowledge that all the fibers of the dura are arranged in a parallel direction. Thus, this study evaluated the dural lesions produced by Whitacre and Quincke spinal needles in the external and internal surface of the dura mater of the lower spine area in an attempt to gain more insight into the pathophysiology of postdural puncture headaches (PDPH). Methods The T11-L4 dural membranes from 5 fresh (immediately after extraction of organs for transplantation), male patients declared brain dead, ages 23, 46, 48, 55, and 60 years, were excised by anterior laminectomy. Morphologic orientation of the membrane and normal pH were maintained with an apparatus designed for this purpose. One hundred punctures (20 on each sample) at 90-degree angles were done with a new needle each time, 50 with 25-gauge Whitacre and 50 with 25-gauge Quincke needles. Half of the punctures with the Quincke needles were done with the bevel in parallel direction to the axis of the spinal cord, and the rest with the bevel perpendicular to it. Fixation in solutions of 2.5% glutaraldehyde phosphate buffer, followed by dehydration with acetone, was done 15 minutes after the punctures. After acetone was removed at ideal conditions of temperature and pressure, the specimens were then metallized with carbon followed by gold and inspected under a scanning electron microscope. Results Twenty-five of the Whitacre and 23 of the Quincke punctures were found for evaluation. There were no differences in the cross-sectional area of the punctures produced by the Whitacre or Quincke needles on the dura. The area of the dural lesions produced by 25-gauge Quincke needles, 15 minutes after they have been withdrawn, was 0.023 mm2 (confidence interval [CI] 95%, 0.015 to 0.027) in the external aspect (epidural surface) and 0.034 mm2 (CI 95%, 0.018 to 0.051) in the internal aspect (arachnoid surface) of the dural sac. The area of the lesions produced by the 25-gauge Whitacre needles was 0.026 mm2 (CI 95%, 0.019 to 0.032) and 0.030 mm2 (CI 95%, 0.025 to 0.036) in the external and internal surfaces of the dural sac, respectively. There were no significant differences in the cross-sectional areas of the punctures produced by the 25-gauge Whitacre or 25-gauge Quincke needles. Moreover, with Quincke needles the dural lesions closed in an 88.3% (CI 95%, 86.3 to 92.4) and 82.7% (CI 95%, 74.1 to 90.9) of their original sizes in the epidural and arachnoid surfaces, respectively. With Whitacre needles, the closure occurred in an 86.8% (CI 95%, 83.8 to 90.3) and 84.8% (CI 95% 81.7 to 87.3) in the dural and arachnoid surfaces, respectively. However, there were differences in the morphology of the lesions. The Whitacre needles produced coarse lesions with significant destruction in the dura's fibers while the Quincke needles produced a “U”-shaped lesion (flap) that mimics the opened lid of a tin can, regardless of the tip's direction. Conclusions The needles produced lesions in the dura with different morphology and characteristics. Lesions with the Quincke needles resulted in a clean-cut opening in the dural membrane while the Whitacre needle produced a more traumatic opening with tearing and severe disruption of the collagen fibers. Thus, we hypothesized that the lower incidence of PDPH seen with the Whitacre needles may be explained, in part, by the inflammatory reaction produced by the tearing of the collagen fibers after dural penetration. This inflammatory reaction may result in a significant edema which may act as a plug limiting the leakage of cerebrospinal fluid.

[1]  M. Wendt,et al.  In Vitro Investigation of Cerebrospinal Fluid Leakage After Dural Puncture with Various Spinal Needles , 1998, Anesthesia and analgesia.

[2]  J. de Andrés,et al.  [Does the subdural space exist?]. , 1998, Revista espanola de anestesiologia y reanimacion.

[3]  Miguel Angel Reina,et al.  New Perspectives in the Microscopic Structure of Human Dura Mater in the Dorsolumbar Region , 1996, Regional Anesthesia & Pain Medicine.

[4]  S. Datta,et al.  Role of Needle Gauge and Tip Configuration in the Production of Lumbar Puncture Headache , 1996, Regional Anesthesia & Pain Medicine.

[5]  W. Orrison,et al.  An MRI Study of Lumbar Puncture Headaches , 1995, Headache.

[6]  S. Halpern,et al.  Postdural Puncture Headache and Spinal Needle Design: Metaanalyses , 1994, Anesthesiology.

[7]  E. Eckstein,et al.  Anatomic and biomechanical properties of human lumbar dura mater. , 1993, Anesthesia and analgesia.

[8]  R. H. Cruickshank,et al.  Fluid Flow Through Durai Puncture Sites An In Vitro Comparison of Needle Point Types , 1990 .

[9]  K. Wilkinson,et al.  Fluid flow through dural puncture sites , 1989, Anaesthesia.

[10]  B. R. Fink,et al.  Orientation of Fibers in Human Dorsal Lumbar Dura Mater in Relation to Lumbar Puncture , 1989, Anesthesia and analgesia.

[11]  R. Haschke,et al.  Spinal Needle Determinants of Rate of Transdural Fluid Leak , 1989, Anesthesia and analgesia.

[12]  R. H. Cruickshank,et al.  Fluid flow through dural puncture sites , 1989, Anaesthesia.

[13]  S. Brown,et al.  Cell Surface Labeling for the Scanning Electron Microscope , 1978 .

[14]  J. Koehler Specific ultrastructural probes , 1978 .

[15]  A. Driedger,et al.  Persistent dural cerebrospinal fluid leak shown by retrograde radionuclide myelography: case report. , 1976, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[16]  J. Koehler,et al.  Advanced Techniques in Biological Electron Microscopy , 1974 .

[17]  W. Tourtellotte,et al.  Prolonged post‐lumbar puncture cerebrospinal fluid leakage from lumbar subarachnoid space demonstrated by radioisotope myelography , 1971, Neurology.

[18]  J. Pool Myeloscopy: intraspinal endoscopy. , 1957, The Surgical clinics of North America.

[19]  R. J. Whitacre,et al.  Pencil-point needle in prevention of postspinal headache. , 1951, Journal of the American Medical Association.

[20]  V. S. Wammock,et al.  Erythema multiforme exudativum (Stevens-Johnson syndrome); report on a patient treated with pituitary adrenocorticotropic hormone. , 1951, Journal of the American Medical Association.

[21]  G. Pickering Lumbar puncture headache. , 1948, Brain : a journal of neurology.

[22]  T. Gordh,et al.  Headache after spinal anesthesia and a technique for lessening its frequency. , 1946, Acta chirurgica Scandinavica.

[23]  H. Wolff,et al.  EXPERIMENTAL STUDIES ON HEADACHE: ANALYSIS OF THE HEADACHE ASSOCIATED WITH CHANGES IN INTRACRANIAL PRESSURE , 1943 .

[24]  H. Wolff,et al.  EXPERIMENTAL STUDIES ON HEADACHE , 1942 .