Nonlinear Constitutive Laws in Viscoelasticity

The theory of viscoelasticity appears to play a central role in the description of materials which exhibit time dependent stress—strain behavior. Various materials like polymers, some soft biological tissues, and various foods have been already successfully modeled as nonlinear viscoelastic materials.The literature in these application areas is replete with different, seemingly unconnected nonlinear viscoelastic models. The aim of the present paper is to review the classical nonlinear viscoelastic models and provide a unifying framework using the continuum mechanics formalism.

[1]  B. D. Coleman,et al.  SIMPLE FLUIDS WITH FADING MEMORY , 1962 .

[2]  Kumbakonam R. Rajagopal,et al.  Mechanical Response of Polymers: An Introduction , 2000 .

[3]  R. Rivlin,et al.  Representation theorems in the mechanics of materials with memory , 1964 .

[4]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[5]  A. Wineman,et al.  Yieldlike response of a compressible nonlinear viscoelastic solid , 1995 .

[6]  Ronald S. Rivlin,et al.  The mechanics of non-linear materials with memory , 1959 .

[7]  M. Fréchet Sur les fonctionnelles continues , 1910 .

[8]  V. V. Mshvenieradze Analysis ‘Problem’ No. 12, ‘All swans are white or black’. Does this Refer to Possible Swans on Canals on Mars? , 1958 .

[9]  A. Beris,et al.  On the admissibility criteria for linear viscoelasticity kernels , 1993 .

[10]  Modelling “unusual” behaviour after strain reversal with hierarchical fractional models , 2004 .

[11]  Kumbakonam R. Rajagopal,et al.  Mechanics of Mixtures , 1995 .

[12]  Mircea Sofonea,et al.  Functional and numerical methods in viscoplasticity , 1993 .

[13]  Millard F. Beatty,et al.  Topics in Finite Elasticity: Hyperelasticity of Rubber, Elastomers, and Biological Tissues—With Examples , 1987 .

[14]  On the Fading Memory , 1983 .

[15]  J. Ferry,et al.  Mathematical Structure of the Theories of Viscoelasticity , 1955 .

[16]  S L Woo,et al.  A single integral finite strain viscoelastic model of ligaments and tendons. , 1996, Journal of biomechanical engineering.

[17]  F. J. Lockett,et al.  Nonlinear viscoelastic solids , 1972 .

[18]  I Nigul,et al.  On algorithms of evaluation of Fung's relaxation function parameters. , 1987, Journal of biomechanics.

[19]  A A Sauren,et al.  A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung. , 1983, Journal of biomechanical engineering.

[20]  R. MacCamy A model for one-dimensional, nonlinear viscoelasticity , 1977 .

[21]  A. Hanyga Fractional-order relaxation laws in non-linear viscoelasticity , 2007 .

[22]  A. Cemal Eringen,et al.  Nonlinear theory of continuous media , 1962 .

[23]  J. Meixner,et al.  S. Flügge, Herausgeber: Handbuch der Physik, Band III/3: Die nicht‐linearen Feldtheorien der Mechanik. Von C. Truesdell und W. Noll. Springer‐Verlag, Berlin/Heidelberg/New York 1965. VIII/602 Seiten. Preis: 198,‐ DM , 1967, Berichte der Bunsengesellschaft für physikalische Chemie.

[24]  Michael Renardy,et al.  Mathematical Analysis of Viscoelastic Flows , 1987 .

[25]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[26]  H. G. Alexander More about the Paradigm-Case Argument , 1958 .

[27]  A. Pipkin,et al.  Lectures on Viscoelasticity Theory , 1972 .

[28]  A. Pipkin,et al.  Small Finite Deformations of Viscoelastic Solids , 1964 .

[29]  Ronald S. Rivlin,et al.  Further Remarks on the Stress-Deformation Relations for Isotropic Materials , 1955 .

[30]  R. Koeller Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics , 1986 .

[31]  Clifford Ambrose Truesdell Historical Introit The origins of rational thermodynamics , 1984 .

[32]  Walter Noll,et al.  Foundations of Linear Viscoelasticity , 1961 .

[33]  T. G. Rogers,et al.  A non-linear integral representation for viscoelastic behaviour , 1968 .

[34]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[35]  C. Dafermos The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity , 1969 .

[36]  A. Barabasi,et al.  Lung tissue viscoelasticity: a mathematical framework and its molecular basis. , 1994, Journal of applied physiology.

[37]  A A Sauren,et al.  Parameter estimation using the quasi-linear viscoelastic model proposed by Fung. , 1984, Journal of biomechanical engineering.

[38]  A. Wineman,et al.  Shear and normal stress effects in finite circular shear of a compressible non-linear viscoelastic solid , 1996 .

[39]  C. C. Wang,et al.  The principle of fading memory , 1965 .

[40]  A.J.M. Spencer,et al.  The theory of matrix polynomials and its application to the mechanics of isotropic continua , 1958 .

[41]  A A Sauren,et al.  Elastic and viscoelastic material behaviour of fresh and glutaraldehyde-treated porcine aortic valve tissue. , 1983, Journal of biomechanics.

[42]  A. Giacomin,et al.  Molecular origins of nonlinear viscoelasticity , 1998 .

[43]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[44]  A A Sauren,et al.  The mechanical properties of porcine aortic valve tissues. , 1983, Journal of biomechanics.

[45]  Alan S. Wineman,et al.  Large axially symmetric stretching of a nonlinear viscoelastic membrane , 1972 .

[46]  Michael Renardy,et al.  Mathematical problems in viscoelasticity , 1987 .

[47]  B. D. Coleman,et al.  An approximation theorem for functionals, with applications in continuum mechanics , 1960 .

[48]  R. Christensen Theory of viscoelasticity : an introduction , 1971 .

[49]  D R Boughner,et al.  Quasi-Linear Viscoelastic theory applied to internal shearing of porcine aortic valve leaflets. , 1999, Journal of biomechanical engineering.

[50]  M. Gurtin,et al.  On the linear theory of viscoelasticity , 1962 .

[51]  R L Stalnaker,et al.  A constitutive relationship for large deformation finite element modeling of brain tissue. , 1995, Journal of biomechanical engineering.

[52]  Further results in the theory of matrix polynomials , 1959 .

[53]  C. C. Wang,et al.  Stress relaxation and the principle of fading memory , 1965 .

[54]  V. Lubarda Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics , 2004 .

[55]  W. Noll Proof of the maximality of the orthogonal group in the unimodular group , 1965 .

[56]  Walter Noll,et al.  A mathematical theory of the mechanical behavior of continuous media , 1958 .

[57]  A.J.M. Spencer,et al.  Finite integrity bases for five or fewer symmetric 3×3 matrices , 1958 .

[58]  Y. Fung Foundations of solid mechanics , 1965 .