Magnetic anisotropy in permalloy: Hidden quantum mechanical features

By means of relativistic, first principles calculations, we investigate the microscopic origin of the vanishingly low magnetic anisotropy of Permalloy, here proposed to be intrinsically related to ...

[1]  D. Mauri,et al.  Magnetism in very thin films of permalloy measured by spin polarized cascade electrons , 1989 .

[2]  A. Enders,et al.  Is the magnetic anisotropy proportional to the orbital moment , 2011 .

[3]  Frota-Pessôa First-principles real-space linear-muffin-tin-orbital calculations of 3d impurities in Cu. , 1992, Physical Review B (Condensed Matter).

[4]  G. Kresse,et al.  Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe 1 -x Co x alloys , 2016 .

[5]  S. Frota-pessôa,et al.  Orbital moments of 3d adatoms and Co nanostructures on Cu(001) surfaces , 2005 .

[6]  Richard F. L. Evans,et al.  Atomistic Spin Dynamics , 2020, Handbook of Materials Modeling.

[7]  X. Jin,et al.  Magnetocrystalline anisotropy in permalloy revisited. , 2006, Physical review letters.

[8]  A. Roos,et al.  Tunable giant magnetic anisotropy in amorphous SmCo thin films , 2013 .

[9]  H. Zabel,et al.  Development of magnetic moments in Fe1 − xNix-alloys , 2011 .

[10]  P. Bruno,et al.  Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. , 1989, Physical review. B, Condensed matter.

[11]  D. Åberg,et al.  Density functional theory calculations of magnetocrystalline anisotropy energies for ( Fe1–xCox)2B , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[13]  O. Hjortstam,et al.  Calculated trends of the magnetostriction coefficient of 3d alloys from first principles , 2000 .

[14]  L. W. Mckeehan Magnetic Interaction and Resultant Anisotropy in Unstrained Ferromagnetic Crystals , 1937 .

[15]  O. Eriksson,et al.  Ab initio calculation of the magnetocrystalline anisotropy and spin and orbital moments of a bcc Co(001) surface , 2005 .

[16]  O. Eriksson,et al.  Non-collinear magnetisation of V clusters supported on a Cu (111) surface : Theory , 2006 .

[17]  Methfessel,et al.  First-principles linear muffin-tin orbital atomic-sphere approximation calculations in real space. , 1991, Physical Review B (Condensed Matter).

[18]  S. Frota-pessôa Magnetic behavior of 3d impurities in Cu, Ag, and Au: First-principles calculations of orbital moments , 2004 .

[19]  H. Ebert,et al.  Correlation effects in fcc-FexNi1−x alloys investigated by means of the KKR-CPA , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  Johansson,et al.  Orbital magnetism in Fe, Co, and Ni. , 1990, Physical review. B, Condensed matter.

[21]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[22]  B. Johansson,et al.  Electronic structure of transition metal compounds; ground-state properties of the 3d-monoxides in the atomic sphere approximation , 1980 .

[23]  O. Eriksson,et al.  Influence of ligand states on the relationship between orbital moment and magnetocrystalline anisotropy. , 2007, Physical review letters.

[24]  J. Renard,et al.  Magnetic surface anisotropy of transition metal ultrathin films , 1989 .

[25]  M. Alouani,et al.  Magnetic anisotropy in Gd, GdN, and GdFe 2 tuned by the energy of gadolinium 4 f states , 2009 .

[26]  Kelly,et al.  First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel. , 1990, Physical review. B, Condensed matter.

[27]  Johansson,et al.  Total energy calculation of the magnetocrystalline anisotropy energy in the ferromagnetic 3d metals. , 1995, Physical review letters.

[28]  P. Bruno,et al.  Curie temperatures of fcc and bcc nickel and permalloy: Supercell and Green's function methods , 2008 .