Magnetic anisotropy in permalloy: Hidden quantum mechanical features
暂无分享,去创建一个
Olle Eriksson | Jan Rusz | O. Eriksson | M. Pereiro | J. Rusz | Debora C M Rodrigues | Angela B Klautau | Alexander Edstrom | Lars Nordstrom | Manuel Pereiro | Bjorgvin Hjorvarsson | A. Edstrom | Â. Klautau | B. Hjorvarsson | D. Rodrigues | L. Nordstrom | A. Klautau
[1] D. Mauri,et al. Magnetism in very thin films of permalloy measured by spin polarized cascade electrons , 1989 .
[2] A. Enders,et al. Is the magnetic anisotropy proportional to the orbital moment , 2011 .
[3] Frota-Pessôa. First-principles real-space linear-muffin-tin-orbital calculations of 3d impurities in Cu. , 1992, Physical Review B (Condensed Matter).
[4] G. Kresse,et al. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe 1 -x Co x alloys , 2016 .
[5] S. Frota-pessôa,et al. Orbital moments of 3d adatoms and Co nanostructures on Cu(001) surfaces , 2005 .
[6] Richard F. L. Evans,et al. Atomistic Spin Dynamics , 2020, Handbook of Materials Modeling.
[7] X. Jin,et al. Magnetocrystalline anisotropy in permalloy revisited. , 2006, Physical review letters.
[8] A. Roos,et al. Tunable giant magnetic anisotropy in amorphous SmCo thin films , 2013 .
[9] H. Zabel,et al. Development of magnetic moments in Fe1 − xNix-alloys , 2011 .
[10] P. Bruno,et al. Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. , 1989, Physical review. B, Condensed matter.
[11] D. Åberg,et al. Density functional theory calculations of magnetocrystalline anisotropy energies for ( Fe1–xCox)2B , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.
[12] L. Hedin,et al. A local exchange-correlation potential for the spin polarized case. i , 1972 .
[13] O. Hjortstam,et al. Calculated trends of the magnetostriction coefficient of 3d alloys from first principles , 2000 .
[14] L. W. Mckeehan. Magnetic Interaction and Resultant Anisotropy in Unstrained Ferromagnetic Crystals , 1937 .
[15] O. Eriksson,et al. Ab initio calculation of the magnetocrystalline anisotropy and spin and orbital moments of a bcc Co(001) surface , 2005 .
[16] O. Eriksson,et al. Non-collinear magnetisation of V clusters supported on a Cu (111) surface : Theory , 2006 .
[17] Methfessel,et al. First-principles linear muffin-tin orbital atomic-sphere approximation calculations in real space. , 1991, Physical Review B (Condensed Matter).
[18] S. Frota-pessôa. Magnetic behavior of 3d impurities in Cu, Ag, and Au: First-principles calculations of orbital moments , 2004 .
[19] H. Ebert,et al. Correlation effects in fcc-FexNi1−x alloys investigated by means of the KKR-CPA , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[20] Johansson,et al. Orbital magnetism in Fe, Co, and Ni. , 1990, Physical review. B, Condensed matter.
[21] O. K. Andersen,et al. Linear methods in band theory , 1975 .
[22] B. Johansson,et al. Electronic structure of transition metal compounds; ground-state properties of the 3d-monoxides in the atomic sphere approximation , 1980 .
[23] O. Eriksson,et al. Influence of ligand states on the relationship between orbital moment and magnetocrystalline anisotropy. , 2007, Physical review letters.
[24] J. Renard,et al. Magnetic surface anisotropy of transition metal ultrathin films , 1989 .
[25] M. Alouani,et al. Magnetic anisotropy in Gd, GdN, and GdFe 2 tuned by the energy of gadolinium 4 f states , 2009 .
[26] Kelly,et al. First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel. , 1990, Physical review. B, Condensed matter.
[27] Johansson,et al. Total energy calculation of the magnetocrystalline anisotropy energy in the ferromagnetic 3d metals. , 1995, Physical review letters.
[28] P. Bruno,et al. Curie temperatures of fcc and bcc nickel and permalloy: Supercell and Green's function methods , 2008 .