Type I collagen mutation alters the strength and fatigue behavior of Mov13 cortical tissue.

[1]  W. Landis The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. , 1995, Bone.

[2]  P Zioupos,et al.  An examination of the micromechanics of failure of bone and antler by acoustic emission tests and Laser Scanning Confocal Microscopy. , 1994, Medical engineering & physics.

[3]  M K Mansoura,et al.  A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility. , 1993, The Journal of clinical investigation.

[4]  S A Goldstein,et al.  A comparison of the fatigue behavior of human trabecular and cortical bone tissue. , 1992, Journal of biomechanics.

[5]  R. Jaenisch,et al.  Transgenic mouse model of the mild dominant form of osteogenesis imperfecta. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[6]  L. S. Matthews,et al.  Comparison of the trabecular and cortical tissue moduli from human iliac crests , 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[7]  A. Oohira,et al.  Defective association between collagen fibrils and proteoglycans in fragile bone of osteogenesis imperfecta. , 1988, Clinical orthopaedics and related research.

[8]  D R Carter,et al.  Cycle-dependent and time-dependent bone fracture with repeated loading. , 1983, Journal of biomechanical engineering.

[9]  R. Kim,et al.  Fatigue Behavior of Composite Laminate , 1976 .

[10]  K. Piekarski,et al.  Fracture of Bone , 1970 .

[11]  A. Ascenzi,et al.  The tensile properties of single osteons , 1967, The Anatomical record.

[12]  K. Jepsen Characterization of the hierarchical composite properties of cortical bone: A transgenic approach. , 1994 .

[13]  S. Ali,et al.  Differential ossification of the medial and lateral subchondral bone compartments , 1992 .

[14]  Kenneth Reifsnider,et al.  Damage and Damage Mechanics , 1991 .

[15]  Kenneth Reifsnider,et al.  Fatigue of composite materials , 1991 .

[16]  P. Byers,et al.  Brittle bones--fragile molecules: disorders of collagen gene structure and expression. , 1990, Trends in genetics : TIG.

[17]  D B Burr,et al.  Long-term fatigue behavior of compact bone at low strain magnitude and rate. , 1990, Bone.

[18]  S. Goldstein,et al.  The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. , 1990, Journal of biomechanics.

[19]  D R Carter,et al.  Bone creep-fatigue damage accumulation. , 1989, Journal of biomechanics.

[20]  R. Jaenisch,et al.  Embryonic lethal mutation in mice induced by retrovirus insertion into the α1(I) collagen gene , 1983, Nature.

[21]  V. Frankel,et al.  Uniaxial fatigue of human cortical bone. The influence of tissue physical characteristics. , 1981, Journal of biomechanics.

[22]  W C Hayes,et al.  Compact bone fatigue damage--I. Residual strength and stiffness. , 1977, Journal of biomechanics.

[23]  A Ascenzi,et al.  Mechanical similarities between alternate osteons and cross-ply laminates. , 1976, Journal of Biomechanics.

[24]  A H Burstein,et al.  The ultimate properties of bone tissue: the effects of yielding. , 1972, Journal of biomechanics.