Single Output-Dependent Observability Normal Form

This paper gives the sufficient and necessary conditions which guarantee the existence of a diffeomorphism in order to transform a nonlinear system without inputs into a canonical normal form that is output dependent. Moreover, we extend our results to a class of systems with inputs.

[1]  Martin Guay,et al.  Observer Linearization by Output Diffeomorphism and Output-Dependent Time-Scale Transformations , 2001 .

[2]  Henk Nijmeijer,et al.  Time scaling for observer design with linearizable error dynamics , 2004, Autom..

[3]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[4]  D. Boutat,et al.  Quadratic observability normal form , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[5]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[6]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[7]  J. Gauthier,et al.  Bilinearization up to output injection , 1988 .

[8]  H. Hammouri,et al.  Observer synthesis for state-affine systems , 1990, 29th IEEE Conference on Decision and Control.

[9]  J. Gauthier,et al.  Deterministic Observation Theory and Applications , 2001 .

[10]  D. Luenberger An introduction to observers , 1971 .

[11]  Arthur J. Krener,et al.  Nonlinear Observer Design in the Siegel Domain Through Coordinate Changes 1 , 2001 .

[12]  Mondher Farza,et al.  A Simple Observer for a Class of Nonlinear Systems , 1998 .

[13]  D. Boutat,et al.  Output Dependent Observability Linear Normal Form , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  D. Boutat,et al.  Observability quadratic characteristic numbers , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[15]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .