Influence of pH and bath composition on properties of Ni–Fe alloy films synthesized by electrodeposition

Fe–Ni films were electrodeposited on ITO glass substrates from the electrolytes with different molar ratio of Ni$^{\boldsymbol{2+}}$/Fe$^{\boldsymbol{2+}}$ and different pH values (2$\boldsymbol{\cdot}$1, 2$\boldsymbol{\cdot}$9, 3$\boldsymbol{\cdot}$7 and 4$\boldsymbol{\cdot}$3) at 25$\boldsymbol{^\circ}$C. The properties of Fe–Ni alloy films depend on both Ni$^{\boldsymbol{2+}}$ and Fe$^{\boldsymbol{2+}}$ concentrations in electrolyte and pH values. The content of Ni increases from 38% to 84% as the mole ratio of NiSO$_{\boldsymbol{4}}$/FeSO$_{\boldsymbol{4}}$ increasing from 0$\boldsymbol{\cdot}$50/0$\boldsymbol{\cdot}$50 to 0$\boldsymbol{\cdot}$90/0$\boldsymbol{\cdot}$10 in electrolyte and slightly decreases from 65% to 42% as the pH values increase from 2$\boldsymbol{\cdot}$1 to 4$\boldsymbol{\cdot}$3. The X-ray diffraction analysis reveals that the structures of the films strongly depend on the Ni content in the binary films. The magnetic performance of the films shows that the saturation magnetization ($\boldsymbol{M}_{\boldsymbol{\rm s}})$ decreases from 1775$\boldsymbol{\cdot}$01 emu/cm$^{\boldsymbol{3}}$ to 1501$\boldsymbol{\cdot}$46 emu/cm$^{\boldsymbol{3}}$ with the pH value increasing from 2$\boldsymbol{\cdot}$1 to 4$\boldsymbol{\cdot}$3 and the saturation magnetization ($\boldsymbol{M}_{\boldsymbol{\rm s}})$ and coercivity ($\boldsymbol{H}_{\boldsymbol{\rm c}})$ move up from 1150$\boldsymbol{\cdot}$44 emu/cm$^{\boldsymbol{3}}$ and 58$\boldsymbol{\cdot}$86 Oe to 2498$\boldsymbol{\cdot}$88 emu/cm$^{\boldsymbol{3}}$ and 93$\boldsymbol{\cdot}$12 Oe with the increase of Ni$^{\boldsymbol{2+}}$ concentration in the electrolyte, respectively.

[1]  Apirat Siritaratiwat,et al.  Annealing effects on GMR multilayer films , 2000 .

[2]  M. Jałochowski,et al.  Influence of the electrodeposition parameters on surface morphology and local magnetic properties of thin iron layers , 2002 .

[3]  S. R. Sawant,et al.  X‐Ray and Bulk Magnetic Properties of the NiZn Ferrite System , 1996 .

[4]  P. Gyftou,et al.  Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites , 2008 .

[5]  E. Bełtowska-Lehman,et al.  An investigation of the electrodeposition kinetics of Permalloy thin films using a rotating disc electrode , 1980 .

[6]  Uwe Erb,et al.  Synthesis of nanocrystalline permalloy by electrodeposition , 1994 .

[7]  A. Lin,et al.  Electrodeposition and characterization of Fe-Cr-P amorphous alloys from trivalent chromium sulfate electrolyte , 2008 .

[8]  Y. Fung,et al.  Application of carbon fibre microelectrode for studying the impact of pesticides on a frog’s egg , 1999 .

[9]  H. Terryn,et al.  Cathodic inhibition and anomalous electrodeposition of Zn–Co alloys , 2007 .

[10]  Vladislav Korenivski,et al.  GHz magnetic film inductors , 2000 .

[11]  M. Pritzker,et al.  Model for Nickel‐Iron Alloy Electrodeposition on a Rotating Disk Electrode , 1997 .

[12]  M. C. Baykul,et al.  Comparison of Ni–Cu alloy films electrodeposited at low and high pH levels , 2008 .

[13]  C. Chisholm,et al.  Preparation and characterisation of electrodeposited amorphous Sn–Co–Fe ternary alloys , 2007 .

[14]  P. Luches,et al.  Breakdown of the bi-dimensional symmetry in bct Fe layers by epitaxy on Co(112̄0) surface , 2001 .

[15]  C. Lupi,et al.  Electrodeposition of Zn–Ni protective coatings from sulfate–acetate baths , 2002 .

[16]  L. Tian,et al.  The electrodeposition behaviors and magnetic properties of Ni-Co films , 2011 .

[17]  T. Harris,et al.  Effect of Ethylenediamine on the Electrodeposition of Ni‐Fe Alloys , 1999 .

[18]  Lubomyr T. Romankiw,et al.  Batch-fabricated thin-film magnetic recording heads , 1970 .

[19]  O. Karaagac,et al.  Role of electrolyte pH on structural and magnetic properties of Co–Fe films , 2010 .

[20]  K. Yin Potentiostatic Deposition Model of Iron‐Nickel Alloys on the Rotating Disk Electrode in the Presence of Organic Additive , 1997 .

[21]  G. Palumbo,et al.  Application of grain boundary engineering concepts to alleviate intergranular cracking in Alloys 600 and 690 , 1994 .

[22]  Douglas G. Ivey,et al.  Electroplating of Nanocrystalline CoFeNi Soft Magnetic Thin Films from a Stable Citrate-Based Bath , 2004 .

[23]  K. Yin,et al.  Effects of boric acid on the electrodeposition of iron, nickel and iron-nickel , 1996 .

[24]  D. Lashmore,et al.  Giant magnetoresistance in electrodeposited films , 1996 .

[25]  G. P. Kalaignan,et al.  The role of additives in the electrodeposition of nickel–cobalt alloy from acetate electrolyte , 2007 .

[26]  Po-Yu Chen,et al.  Electrodeposition of cobalt and zinccobalt alloys from a lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt , 2001 .

[27]  M. Matlosz Competitive adsorption effects in the electrodeposition of iron-nickel alloys , 1993 .

[28]  L. Tian,et al.  The influence of pH and bath composition on the properties of Fe–Co alloy film electrodeposition , 2010 .

[29]  Jan B. Talbot,et al.  Electrodeposition of Iron‐Group Metals and Binary Alloys from Sulfate Baths. II. Modeling , 2000 .

[30]  Elizabeth J. Podlaha,et al.  Anomalous codeposition of iron group metals. I. Experimental results , 1999 .

[31]  T. Osaka Recent development of Magnetic recording head core materials by plating method , 1999 .

[32]  H. V. Venkatasetty Electrodeposition of Thin Magnetic Permalloy Films , 1970 .

[33]  Tetsuya Osaka,et al.  A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity , 1998, Nature.