Cell Wall Anchor Structure of BcpA Pili in Bacillus anthracis*

Assembly of pili in Gram-positive bacteria and their attachment to the cell wall envelope are mediated by sortases. In Bacillus cereus and its close relative Bacillus anthracis, the major pilin protein BcpA is cleaved between the threonine and the glycine of its C-terminal LPXTG motif sorting signal by the pilin-specific sortase D. The resulting acyl enzyme intermediate is relieved by the nucleophilic attack of the side-chain amino group of lysine within the YPKN motif of another BcpA subunit. Cell wall anchoring of assembled BcpA pili requires sortase A, which also cleaves the LPXTG sorting signal of BcpA between its threonine and glycine residues. We show here that sortases A and D require only the C-terminal sorting signal of BcpA for substrate cleavage. Unlike sortase D, which accepts the YPKN motif as a nucleophile, sortase A forms an amide bond between the BcpA C-terminal carboxyl group of threonine and the side-chain amino group of diaminopimelic acid within the cell wall peptidoglycan of bacilli. These results represent the first demonstration of a cell wall anchor structure for pili, which are deposited by sortase A into the envelope of many different microbes.

[1]  O. Schneewind,et al.  Sortases make pili from three ingredients , 2008, Proceedings of the National Academy of Sciences.

[2]  Anjali Mandlik,et al.  The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria , 2008, Proceedings of the National Academy of Sciences.

[3]  Anthony W. Maresso,et al.  Bacillus anthracis Secretes Proteins That Mediate Heme Acquisition from Hemoglobin , 2008, PLoS pathogens.

[4]  L. Marraffini,et al.  Amide bonds assemble pili on the surface of bacilli , 2008, Proceedings of the National Academy of Sciences.

[5]  A. Camilli,et al.  Roles of the Sortases of Streptococcus pneumoniae in Assembly of the RlrA Pilus , 2008, Journal of bacteriology.

[6]  G. Grandi,et al.  Sortase A Utilizes an Ancillary Protein Anchor for Efficient Cell Wall Anchoring of Pili in Streptococcus agalactiae , 2008, Infection and Immunity.

[7]  Anjali Mandlik,et al.  Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae , 2007, Molecular microbiology.

[8]  L. Marraffini,et al.  Assembly of pili on the surface of Bacillus cereus vegetative cells , 2007, Molecular microbiology.

[9]  A. Joachimiak,et al.  Activation of Inhibitors by Sortase Triggers Irreversible Modification of the Active Site* , 2007, Journal of Biological Chemistry.

[10]  L. Marraffini,et al.  Sortase C-Mediated Anchoring of BasI to the Cell Wall Envelope of Bacillus anthracis , 2007, Journal of bacteriology.

[11]  Asis Das,et al.  Sortase-Catalyzed Assembly of Distinct Heteromeric Fimbriae in Actinomyces naeslundii , 2007, Journal of bacteriology.

[12]  L. Marraffini,et al.  Targeting proteins to the cell wall of sporulating Bacillus anthracis , 2006, Molecular microbiology.

[13]  A. Maresso,et al.  Surface Protein IsdC and Sortase B Are Required for Heme-Iron Scavenging of Bacillus anthracis , 2006, Journal of bacteriology.

[14]  J. Sillanpää,et al.  Endocarditis and biofilm-associated pili of Enterococcus faecalis. , 2006, The Journal of clinical investigation.

[15]  I. Margarit,et al.  Identification of novel genomic islands coding for antigenic pilus‐like structures in Streptococcus agalactiae , 2006, Molecular microbiology.

[16]  Rino Rappuoli,et al.  Pili in Gram-positive pathogens , 2006, Nature Reviews Microbiology.

[17]  S. Guadagnini,et al.  Assembly and role of pili in group B streptococci , 2006, Molecular microbiology.

[18]  L. Marraffini,et al.  Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria , 2006, Microbiology and Molecular Biology Reviews.

[19]  R. Rappuoli,et al.  A pneumococcal pilus influences virulence and host inflammatory responses. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Liddington,et al.  Structure and Lytic Activity of a Bacillus anthracis Prophage Endolysin* , 2005, Journal of Biological Chemistry.

[21]  G. Bensi,et al.  Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  E. Glass,et al.  Bacillus anthracis Sortase A (SrtA) Anchors LPXTG Motif-Containing Surface Proteins to the Cell Wall Envelope , 2005, Journal of bacteriology.

[23]  R. Rappuoli,et al.  Genome Analysis Reveals Pili in Group B Streptococcus , 2005, Science.

[24]  L. Marraffini,et al.  Anchor Structure of Staphylococcal Surface Proteins , 2005, Journal of Biological Chemistry.

[25]  C. Monsempès,et al.  Synthesis of Mosaic Peptidoglycan Cross-bridges by Hybrid Peptidoglycan Assembly Pathways in Gram-positive Bacteria* , 2004, Journal of Biological Chemistry.

[26]  A. Tomasz,et al.  The structure of the cell wall peptidoglycan of Bacillus cereus RSVF1, a strain closely related to Bacillus anthracis. , 2004, Microbial drug resistance.

[27]  T. Urich,et al.  Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane‐bound thiosulphate:quinone oxidoreductase , 2004, Molecular microbiology.

[28]  B. Leander,et al.  Did trypanosomatid parasites have photosynthetic ancestors? , 2004, Trends in microbiology.

[29]  O. Schneewind,et al.  Assembly of pili on the surface of Corynebacterium diphtheriae , 2003, Molecular microbiology.

[30]  Stanley N Cohen,et al.  The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. , 2003, Genes & development.

[31]  Dennis Claessen,et al.  A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. , 2003, Genes & development.

[32]  Steven W. Taylor,et al.  Oxidative Post-translational Modification of Tryptophan Residues in Cardiac Mitochondrial Proteins* , 2003, Journal of Biological Chemistry.

[33]  Eric P. Skaar,et al.  Passage of Heme-Iron Across the Envelope of Staphylococcus aureus , 2003, Science.

[34]  S. Mazmanian,et al.  Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus , 2002, The Journal of Biological Chemistry.

[35]  S. Mazmanian,et al.  An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Mazmanian,et al.  Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Mazmanian,et al.  Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus , 2000, The Journal of Biological Chemistry.

[38]  S. Mazmanian,et al.  Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Mazmanian,et al.  Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. , 1999, Science.

[40]  O. Schneewind,et al.  Anchor Structure of Staphylococcal Surface Proteins , 1997, The Journal of Biological Chemistry.

[41]  O. Schneewind,et al.  Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. , 1995, Science.

[42]  O. Schneewind,et al.  Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram‐positive bacteria , 1994, Molecular microbiology.

[43]  P. Model,et al.  Cell wall sorting signals in surface proteins of gram‐positive bacteria. , 1993, The EMBO journal.

[44]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[45]  G. Calandra,et al.  Lysis and protoplast formation of group B streptococci by mutanolysin , 1980, Infection and immunity.

[46]  S. Nishimura,et al.  Mutanolysin, Bacteriolytic Agent for Cariogenic Streptococci: Partial Purification and Properties , 1974, Antimicrobial Agents and Chemotherapy.

[47]  J. Strominger,et al.  Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of a C55 isoprenoid alcohol. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Strominger,et al.  Structure of the Cell Wall of Staphylococcus aureus StrainCopenhagen. VI. The Soluble Glycopeptide and Its Sequential Degradatuib by Peptidases , 1965 .