Corrosion of pipeline steel in dense phase CO2 containing impurities: A critical review of test methodologies

[1]  W. M. Bos,et al.  Materials challenges with CO2 transport and injection for carbon capture and storage (IJGGC D21–00389) , 2022, International Journal of Greenhouse Gas Control.

[2]  A. Neville,et al.  Effect of flow rate on the corrosion behaviour of API 5L X80 steel in water-saturated supercritical CO2 environments , 2021, Corrosion.

[3]  H. Jafarian,et al.  Sensitivity to hydrogen induced cracking, and corrosion performance of an API X65 pipeline steel in H2S containing environment: influence of heat treatment and its subsequent microstructural changes , 2021 .

[4]  Yong Xiang,et al.  Influence of elemental sulphur on the corrosion mechanism of X80 steel in supercritical CO2-saturated aqueous phase environment , 2021 .

[5]  Jingli Luo,et al.  Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation , 2021 .

[6]  Jianxin Liu,et al.  Probing the initial corrosion behavior of X65 steel in CCUS-EOR environments with impure supercritical CO2 fluids , 2021 .

[7]  X. Xing,et al.  Analysis of internal corrosion of supercritical CO2 pipeline , 2021 .

[8]  C. Ostertag-Henning,et al.  Towards Defining Reasonable Minimum Composition Thresholds – Impacts of Variable CO2 Stream Compositions on Transport, Injection and Storage , 2021, SSRN Electronic Journal.

[9]  G. Svenningsen,et al.  Corrosion of carbon steel in simulated CCS streams , 2021 .

[10]  Bjørn H. Morland Experimental based CO2 transport specification ensuring material integrity , 2021, SSRN Electronic Journal.

[11]  G. Svenningsen,et al.  The Challenge of Monitoring Impurity Content of CO2 Streams , 2021, Processes.

[12]  Xin Ma,et al.  Carbon dioxide transport via pipelines: A systematic review , 2020, Journal of Cleaner Production.

[13]  Weichao Yan,et al.  Characterization of 13Cr steel corrosion in simulated EOR-CCUS environment with flue gas impurities , 2020 .

[14]  Kaiyang Li,et al.  Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines , 2020 .

[15]  Yongbo Yan Corrosion behaviour of X80 pipeline steel welded joint in H2O- saturated supercritical-CO2 environment , 2020 .

[16]  G. Svenningsen,et al.  Nitric and Sulfuric Acid Solubility in Dense Phase CO2 , 2019 .

[17]  G. Song,et al.  Corrosion Control in CO2 Enhanced Oil Recovery From a Perspective of Multiphase Fluids , 2019, Front. Mater..

[18]  M. Aliofkhazraei,et al.  A comprehensive review on internal corrosion and cracking of oil and gas pipelines , 2019, Journal of Natural Gas Science and Engineering.

[19]  Jianguo Liu,et al.  A comprehensive review of metal corrosion in a supercritical CO2 environment , 2019, International Journal of Greenhouse Gas Control.

[20]  Ruiqing Shen,et al.  Synergistic effect of O2 and SO2 gas impurities on X70 steel corrosion in water-saturated supercritical CO2 , 2019, Process Safety and Environmental Protection.

[21]  Qinglin Li,et al.  A Review of Pipeline Transportation Technology of Carbon Dioxide , 2019, IOP Conference Series: Earth and Environmental Science.

[22]  T. Norby,et al.  Effect of SO2, O2, NO2, and H2O Concentrations on Chemical Reactions and Corrosion of Carbon Steel in Dense Phase CO2 , 2019, CORROSION.

[23]  G. Svenningsen,et al.  Corrosion in CO2 Systems with Impurities Creating Strong Acids , 2019, CORROSION.

[24]  T. Norby,et al.  Acid Reactions in Hub Systems Consisting of Separate Non-Reactive Co2 Transport Lines , 2019, International Journal of Greenhouse Gas Control.

[25]  Xiao-hui Liu,et al.  Critical water content for corrosion of X65 mild steel in gaseous, liquid and supercritical CO2 stream , 2019, International Journal of Greenhouse Gas Control.

[26]  Z. Ji,et al.  Assessing the corrosion product scale formation characteristics of X80 steel in supercritical CO2-H2O binary systems with flue gas and NaCl impurities relevant to CCUS technology , 2019, The Journal of Supercritical Fluids.

[27]  B. Kermani,et al.  Dense Phase CO2 Corrosion , 2019 .

[28]  D. Bettge,et al.  On the Corrosion Mechanism of CO2 Transport Pipeline Steel Caused by Condensate: Synergistic Effects of NO2 and SO2 , 2019, Materials.

[29]  A. Neville,et al.  Erosion-corrosion interactions of X65 carbon steel in aqueous CO2 environments , 2018, Wear.

[30]  A. Neville,et al.  A review of iron carbonate (FeCO3) formation in the oil and gas industry , 2018, Corrosion Science.

[31]  U. Eduok,et al.  Hydrogen related degradation in pipeline steel: A review , 2018, International Journal of Hydrogen Energy.

[32]  Weichao Yan,et al.  Understanding the pitting corrosion mechanism of pipeline steel in an impure supercritical CO2 environment , 2018, The Journal of Supercritical Fluids.

[33]  I. Mujtaba,et al.  CO2 Pipeline Design: A Review , 2018, Energies.

[34]  Yong Wang,et al.  Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO 2 transport environments mixed with H 2 S , 2018, International Journal of Greenhouse Gas Control.

[35]  Yong Wang,et al.  Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO 2 -H 2 O-O 2 -H 2 S-SO 2 environment as relevant to CCS application , 2018, Corrosion Science.

[36]  Solomon F. Brown,et al.  Carbon capture and storage (CCS): the way forward , 2018 .

[37]  K. Gao,et al.  Effect of flow rate on localized corrosion of X70 steel in supercritical CO2 environments , 2018 .

[38]  K. Gao,et al.  Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments , 2018 .

[39]  Z. Wang,et al.  Flow dependence of steel corrosion in supercritical CO2 environments with different water concentrations , 2018 .

[40]  Zhe Wang,et al.  Cross impact of CO2 phase and impurities on the corrosion behavior for stainless steel and carbon steel in water-containing dense CO2 environments , 2018 .

[41]  Chechet Biliyok,et al.  A systematic review of key challenges of CO2 transport via pipelines , 2018 .

[42]  A. Neville,et al.  Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2/O2 , 2017 .

[43]  G. Svenningsen,et al.  Corrosion of Carbon Steel in Dense Phase CO2 with Water above and Below the Solubility Limit , 2017 .

[44]  G. Svenningsen,et al.  Stress Corrosion Cracking Testing of 13Cr Stainless Steel in Dense Phase CO2 with Oxygen , 2017 .

[45]  K. Gao,et al.  Effect of exposure angle on the corrosion behavior of X70 steel under supercritical CO2 and gaseous CO2 environments , 2017 .

[46]  G. A. Zhang,et al.  Corrosion behaviour of X65 carbon steel in supercritical-CO2 containing H2O and O2 in carbon capture and storage (CCS) technology , 2017 .

[47]  Yoon-Seok Choi,et al.  State-of-the-art Overview of Pipeline Steel Corrosion in Impure Dense CO2 for CCS Transportation: Mechanisms and Models , 2017 .

[48]  Zhe Wang,et al.  Effect of High-Concentration O2 on Corrosion Behavior of X70 Steel in Water-Containing Supercritical CO2 with SO2 , 2017 .

[49]  S. Maheshwari,et al.  A review on welding of high strength oil and gas pipeline steels , 2017 .

[50]  Yong Hua,et al.  Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS) – a review , 2017 .

[51]  Yong Wang,et al.  Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system , 2016 .

[52]  Emmanuel Adu,et al.  Influence of Dense Phase CO2 Pipeline Transportation Parameters , 2016 .

[53]  S. Nešić,et al.  A direct measurement of wall shear stress in multiphase flow—Is it an important parameter in CO2 corrosion of carbon steel pipelines? , 2016 .

[54]  Zhe Wang,et al.  Effect of pressure on corrosion behavior of X60, X65, X70, and X80 carbon steels in water-unsaturated supercritical CO2 environments , 2016 .

[55]  Yong Wang,et al.  Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system , 2016 .

[56]  S. Nešić,et al.  Effect of H2S on the Corrosion Behavior of Pipeline Steels in Supercritical and Liquid CO2 Environments , 2016 .

[57]  K. Gao,et al.  Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments , 2016 .

[58]  Zhe Wang,et al.  Impact of surface roughness and humidity on X70 steel corrosion in supercritical CO2 mixture with SO2, H2O, and O2 , 2016 .

[59]  A. Neville,et al.  The effect of O 2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO 2 environments , 2015 .

[60]  K. Gao,et al.  Corrosion behaviors of steels under supercritical CO2 conditions , 2015 .

[61]  Brian Boswell,et al.  Pipeline failures in corrosive environments – A conceptual analysis of trends and effects , 2015 .

[62]  A. Neville,et al.  The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2 , 2015 .

[63]  A. Neville,et al.  Understanding the Influence of SO2 and O2 on the Corrosion of Carbon Steel in Water-Saturated Supercritical CO2 , 2015 .

[64]  M. W. George,et al.  Understanding the solubility of water in carbon capture and storage mixtures: An FTIR spectroscopic study of H2O + CO2 + N2 ternary mixtures , 2015 .

[65]  A. Neville,et al.  Relating iron carbonate morphology to corrosion characteristics for water-saturated supercritical CO2 systems , 2015 .

[66]  A. Neville,et al.  Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2 , 2015 .

[67]  A. Neville,et al.  Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 , 2014 .

[68]  Ivan S. Cole,et al.  A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes , 2014 .

[69]  P. Aagaard,et al.  Examination of CO2-SO2 solubility in water by SAFT1. Implications for CO2 transport and storage. , 2014, The journal of physical chemistry. B.

[70]  Ivan S. Cole,et al.  Investigating the Effect of Water Content in Supercritical CO2 as Relevant to the Corrosion of Carbon Capture and Storage Pipelines , 2014 .

[71]  Arne Dugstad,et al.  Update of DNV recommended practice RP-J202 with focus on CO2 Corrosion with Impurities , 2014 .

[72]  John E. Oakey,et al.  Understanding dense phase CO2 corrosion problems , 2014 .

[73]  Ralph Bäßler,et al.  Corrosion behavior of steels for CO2 injection , 2014 .

[74]  Arne Dugstad,et al.  Corrosion and Bulk Phase Reactions in CO2 Transport Pipelines with Impurities: Review Of Recent Published Studies , 2014 .

[75]  R. Bodnar,et al.  Conductivity Measurements on H2O-Bearing CO2-Rich Fluids , 2014, Journal of Solution Chemistry.

[76]  Arne Dugstad,et al.  Testing of CO2 Specifications With Respect to Corrosion and Bulk Phase Reactions , 2014 .

[77]  Ranjith Pathegama Gamage,et al.  Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines , 2013 .

[78]  S. Lvov,et al.  Electrochemical corrosion measurements in supercritical carbon dioxide - Water systems with and without membrane coating , 2013 .

[79]  S. Lvov,et al.  In Situ Electrochemical Corrosion Measurements of Carbon Steel in Supercritical CO2 Using a Membrane-Coated Electrochemical Probe , 2013 .

[80]  Z. Wang,et al.  Effect of temperature on corrosion behaviour of X70 steel in high pressure CO2/SO2/O2/H2O environments , 2013 .

[81]  Hans-Joachim Kühn,et al.  Materials Testing under Mechanical Stress, Pressure and Turbulent Flow of Impure Supercritical CO2 , 2013 .

[82]  Zhe Wang,et al.  Effect of Exposure Time on the Corrosion Rates of X70 Steel in Supercritical CO2/SO2/O2/H2O Environments , 2013 .

[83]  S. Nešić,et al.  Corrosion Behavior of API 5L X65 Carbon Steel Under Supercritical and Liquid Carbon Dioxide Phases in the Presence of Water and Sulfur Dioxide , 2013 .

[84]  Arne Dugstad,et al.  Effect of SO2 and NO2 on Corrosion and Solid Formation in Dense Phase CO2 Pipelines , 2013 .

[85]  A. Kranzmann,et al.  Investigation of Pipeline Corrosion in Pressurized CO2 Containing Impurities , 2013 .

[86]  Arne Dugstad,et al.  Corrosion in Dense Phase CO2 – the Impact of Depressurisation and Accumulation of Impurities , 2013 .

[87]  John E. Oakey,et al.  Design overview of high pressure dense phase CO2 pipeline transport in flow mode. , 2013 .

[88]  Aki Sebastian Ruhl,et al.  Corrosion in supercritical CO2 by diffusion of flue gas acids and water , 2012 .

[89]  Weidou Ni,et al.  The upper limit of moisture content for supercritical CO2 pipeline transport , 2012 .

[90]  N. Birbilis,et al.  State of the aqueous phase in liquid and supercritical CO2 as relevant to CCS pipelines , 2012 .

[91]  Alfons Kather,et al.  Corrosion of Pipeline and Compressor Materials Due to Impurities in Separated CO2 from Fossil-Fuelled Power Plants , 2012 .

[92]  Chao Xu,et al.  Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 , 2011 .

[93]  Ivan S. Cole,et al.  Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem? , 2011 .

[94]  Yoon-Seok Choi,et al.  Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments , 2011 .

[95]  N. Kapur,et al.  Displacement of liquid droplets on a surface by a shearing air flow. , 2011, Journal of colloid and interface science.

[96]  Kewei Gao,et al.  Water Effect On Steel Under Supercritical CO2 Condition , 2011 .

[97]  Arne Dugstad,et al.  Corrosion of transport pipelines for CO2–Effect of water ingress , 2011 .

[98]  Yoon-Seok Choi,et al.  Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments. , 2010, Environmental science & technology.

[99]  Svend Tollak Munkejord,et al.  Thermo- and fluid-dynamical modelling of two-phase multi-component carbon dioxide mixtures , 2010 .

[100]  Lars Even Torbergsen,et al.  Development of a Guideline for Safe, Reliable and Cost Efficient Transmission of CO2 in Pipelines , 2009 .

[101]  M. Mølnvik,et al.  Dynamis CO2 quality recommendations , 2008 .

[102]  S. Nešić Key issues related to modelling of internal corrosion of oil and gas pipelines - A review , 2007 .

[103]  Peter Kentish,et al.  Stress corrosion cracking of gas pipelines – Effect of surface roughness, orientations and flattening , 2007 .

[104]  G. Falcone,et al.  Experimental Validation of Multiphase Flow Models and Testing of Multiphase Flow Meters: A Critical Review of Flow Loops Worldwide , 2007 .

[105]  Mona J. Mølnvik,et al.  Thermodynamic Models for Calculating Mutual Solubilities in H2O–CO2–CH4 Mixtures , 2006 .

[106]  John Gale,et al.  Transmission of CO2-Safety and Economic Considerations , 2004 .

[107]  N. Robert Sorensen,et al.  Corrosive effects of supercritical carbon dioxide and cosolvents on metals , 1996 .

[108]  F. W. Schremp,et al.  Effect of Supercritical Carbon Dioxide (CO2) on Construction Materials , 1975 .

[109]  K. Aziz,et al.  A flow pattern map for gas—liquid flow in horizontal pipes , 1974 .

[110]  L. F. Moody Friction Factors for Pipe Flow , 1944, Journal of Fluids Engineering.

[111]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .