Multichannel Wireless Neural Recording AFE Architectures: Analysis, Modeling, and Tradeoffs

This paper presents theoretical analyses of three analog-to-digital-conversion-based and one analog-to-time-conversion-based AFE architectures. They are particularly focused on the significant parameters that affect the design of neural recording implants.

[1]  Fan Zhang,et al.  A Batteryless 19 $\mu$W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications , 2013, IEEE Journal of Solid-State Circuits.

[2]  Naveen Verma,et al.  Ultralow-power electronics for biomedical applications. , 2008, Annual review of biomedical engineering.

[3]  Rahul Sarpeshkar,et al.  A Low-Power 32-Channel Digitally Programmable Neural Recording Integrated Circuit , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[4]  M. Ghovanloo,et al.  Using Pulse Width Modulation for Wireless Transmission of Neural Signals in Multichannel Neural Recording Systems , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[5]  Teresa H. Y. Meng,et al.  HermesE: A 96-Channel Full Data Rate Direct Neural Interface in 0.13 $\mu$ m CMOS , 2012, IEEE Journal of Solid-State Circuits.

[6]  Jan M. Rabaey,et al.  A Minimally Invasive 64-Channel Wireless μECoG Implant , 2015, IEEE Journal of Solid-State Circuits.

[7]  R.R. Harrison,et al.  A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System , 2006, IEEE Journal of Solid-State Circuits.

[8]  Miguel A. L. Nicolelis,et al.  Two multichannel integrated circuits for neural recording and signal processing , 2003, IEEE Transactions on Biomedical Engineering.

[9]  Vaibhav Karkare,et al.  A system-level view of optimizing high-channel-count wireless biosignal telemetry , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  Boris Murmann,et al.  Power Dissipation Bounds for High-Speed Nyquist Analog-to-Digital Converters , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Maysam Ghovanloo,et al.  A clockless ultra low-noise low-power wireless implantable neural recording system , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[12]  Amir M. Sodagar,et al.  Microelectrodes, Microelectronics, and Implantable Neural Microsystems , 2008, Proceedings of the IEEE.

[13]  Kensall D. Wise,et al.  Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays , 2005, IEEE Transactions on Biomedical Engineering.

[14]  Maysam Ghovanloo,et al.  Energy-efficient switching scheme in SAR ADC for biomedical electronics , 2015 .

[15]  Refet Firat Yazicioglu,et al.  An implantable 455-active-electrode 52-channel CMOS neural probe , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[16]  Maysam Ghovanloo,et al.  An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[17]  Heemin Y. Yang A time-based energy-efficient analog-to-digital converter , 2005, IEEE Journal of Solid-State Circuits.

[18]  Maysam Ghovanloo,et al.  A wideband PWM-FSK receiver for wireless implantable neural recording applications , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[19]  Moo Sung Chae,et al.  Design Optimization for Integrated Neural Recording Systems , 2008, IEEE Journal of Solid-State Circuits.

[20]  Lei Liu,et al.  A 100-Channel 1-mW Implantable Neural Recording IC , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Hassan Sepehrian,et al.  A Survey of Neural Front End Amplifiers and Their Requirements toward Practical Neural Interfaces , 2014 .

[22]  Maysam Ghovanloo,et al.  A Wideband Dual-Antenna Receiver for Wireless Recording From Animals Behaving in Large Arenas , 2013, IEEE Transactions on Biomedical Engineering.

[23]  Tsung-Hsien Lin,et al.  A 200-pJ/b MUX-Based RF Transmitter for Implantable Multichannel Neural Recording , 2009, IEEE Transactions on Microwave Theory and Techniques.

[24]  Maysam Ghovanloo,et al.  A flexible clockless 32-ch simultaneous wireless neural recording system with adjustable resolution , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[25]  Moo Sung Chae,et al.  A 128-Channel 6mW Wireless Neural Recording IC with On-the-Fly Spike Sorting and UWB Tansmitter , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[26]  P. Mohseni,et al.  Wireless multichannel biopotential recording using an integrated FM telemetry circuit , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[27]  Ameya Bhide,et al.  A 53-nW 9.12-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[28]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[29]  Yong Lian,et al.  A 1V 22µW 32-channel implantable EEG recording IC , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[30]  Amir M. Sodagar,et al.  Implantable Biomedical Devices , 2012 .

[31]  Ameya Bhide,et al.  A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-$\mu$m CMOS for Medical Implant Devices , 2012, IEEE Journal of Solid-State Circuits.

[32]  Mohamad Sawan,et al.  A Mixed-Signal Multichip Neural Recording Interface With Bandwidth Reduction , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[33]  Jian Xu,et al.  A Frequency Shaping Neural Recorder With 3 pF Input Capacitance and 11 Plus 4.5 Bits Dynamic Range , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[34]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.