On the landing response of the blowfly, Calliphora erythrocephala

The dependence of the landing response on the direction of moving stimuli (periodic gratings, single or double stripes) was studied in blowflies, Calliphora erythrocephala, of both sexes. Directions of motion eliciting maximally strong responses (preference direction) vary with the eye region stimulated: they are distributed radially from a common origin forming a flow-field. This origin lies at the intersection of the eye equators with the median plane of the animal. By changing its body posture relative to the direction of flight, the fly may align the pole of this flow field-with its direction of flight thus maximizing signal flow for the landing approach. Sex-specific differences were found for dorsal eye regions in which the shift of preference directions from vertical to obliquely inclined directions of motion (against the median plane) could only be determined for male flies.

[1]  H. Eckert,et al.  Anatomical and physiological properties of the vertical cells in the third optic ganglion ofPhaenicia sericata (Diptera, Calliphoridae) , 1978, Journal of comparative physiology.

[2]  H. Wagner Flow-field variables trigger landing in flies , 1982, Nature.

[3]  V. Braitenberg,et al.  Patterns of projection in the visual system of the fly II. Quantitative aspects of second order neurons in relation to models of movement perception , 2004, Experimental Brain Research.

[4]  C. Wehrhahn,et al.  Is the landing response of the housefly (Musca) driven by motion of a flow field? , 1981, Biological Cybernetics.

[5]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[6]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[7]  H. Eckert,et al.  Excitatory and inhibitory response components in the landing response of the blowfly,Calliphora erythrocephala , 1980, Journal of comparative physiology.

[8]  N. Franceschini,et al.  Sexual dimorphism in a photoreceptor , 1981, Nature.

[9]  R. Hengstenberg Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora , 1982, Journal of comparative physiology.

[10]  K. Hamdorf,et al.  Does a homogeneous population of elementary movement detectors activate the landing response of blowflies, Calliphora erythrocephala? , 1983, Biological Cybernetics.

[11]  Cloe Taddei-Ferretti,et al.  Landing Reaction of Musca domestica , III: Dependence on the Luminous Characteristics of the Stimulus , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[12]  T. S. Collett,et al.  Some operating rules for the optomotor system of a hoverfly during voluntary flight , 1980, Journal of comparative physiology.

[13]  L. Goodman The Landing Responses of Insects II. The Electrical Response of the Compound Eye of the Fly, Lucilia Sericata, Upon Stimulation by Moving Objects and Slow Changes of Light Intensity , 1964 .

[14]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[15]  G. D. Mccann,et al.  Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. , 1968, Journal of neurophysiology.

[16]  Doekele G. Stavenga,et al.  Pseudopupils of Compound Eyes , 1979 .

[17]  C. Wehrhahn,et al.  Sex-specific differences in the chasing behaviour of houseflies (Musca) , 1979, Biological Cybernetics.

[18]  K. Hamdorf,et al.  The contrast frequency-dependence: A criterion for judging the non-participation of neurones in the control of behavioural responses , 1981, Journal of comparative physiology.

[19]  K Hausen Monokulare und binokulare Bewegungsauswertung in der Lobula plate der Fliege , 1981 .

[20]  Hendrik Eckert,et al.  Orientation sensitivity of the visual movement detection system activating the landing response of the blowflies, Calliphora, and Phaenicia: A behavioural investigation , 1980, Biological Cybernetics.

[21]  V. Braitenberg,et al.  Landing reaction of musca domestica induced by visual stimuli , 1966, Naturwissenschaften.

[22]  Radial pattern expansion drives the landing response of the blowfly, Calliphora , 1982, Naturwissenschaften.

[23]  N. J. Strausfeld,et al.  Male and female visual neurones in dipterous insects , 1980, Nature.

[24]  Nicholas J. Strausfeld,et al.  Sexually dimorphic interneuron arrangements in the fly visual system , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  Hendrik Eckert,et al.  The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata , 1983 .

[26]  Hendrik Eckert,et al.  The horizontal cells in the lobula plate of the blowfly,Phaenicia sericata , 1981, Journal of comparative physiology.

[27]  L. Goodman The Landing Responses of Insects: I. The Landing Response of the Fly, Lucilia Sericata, and Other Calliphorinae , 1960 .

[28]  Cloe Taddei-Ferretti,et al.  Landing Reaction of Musca domestica, IV: A. Monocular and Binocular Vision; B. Relationships between Landing and Optomotor Reactions , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[29]  Habituation and sensitization of the landing response ofDrosophila melanogaster , 1981, Naturwissenschaften.

[30]  Excitation and inhibition in the activation of the landing response of the blowfly, Calliphora , 1979, Naturwissenschaften.

[31]  D. G. Stavenga,et al.  Retinal lattice, visual field and binocularities in flies , 1977, Journal of comparative physiology.

[32]  R. Wehner Spatial Vision in Arthropods , 1981 .

[33]  N. Franceschini,et al.  Etude optique in vivo des éléments photorécepteurs dans l'œil composé de Drosophila , 2004, Kybernetik.

[34]  K Hausen Neural Circuitry of Visual Orientation Behavior in Flies: Structure and Function of the Lobula Complex , 1979 .

[35]  M. Zanforlin,et al.  Ocelli, dark adaptation and landing reaction in a flesh fly (Calliphoridae) , 1980 .