Multiscale Modeling in Micromagnetics: Well-Posedness and Numerical Integration
暂无分享,去创建一个
Michael Feischl | Dirk Praetorius | Florian Bruckner | D. Praetorius | F. Bruckner | M. Feischl | T. Fp | T. Fp
[1] C. Remling. Embedded singular continuous spectrum for one-dimensional Schrödinger operators , 1999 .
[2] V. Pivovarchik,et al. On multiplicity of a quantum graph spectrum , 2011 .
[3] G. Weiss,et al. EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .
[4] Dirk Praetorius,et al. Convergent geometric integrator for the Landau‐Lifshitz‐Gilbert equation in micromagnetics , 2011 .
[5] B. M. Levitan,et al. Inverse Sturm-Liouville Problems , 1987 .
[6] D. Yafaev. Scattering Theory: Some Old and New Problems , 2000 .
[7] Olaf Steinbach,et al. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .
[8] L. Nikolova,et al. On ψ- interpolation spaces , 2009 .
[9] Robert D. Russell,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[10] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[11] Sam Palmer,et al. Magnetic domains , 2012, Journal of High Energy Physics.
[12] V. Gorbachuk,et al. Boundary Value Problems for Operator Differential Equations , 1990 .
[13] Andreas Prohl,et al. Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation , 2007, Math. Comput..
[14] C. Schwab,et al. Boundary Element Methods , 2010 .
[15] S. Hassi,et al. Boundary relations and their Weyl families , 2006 .
[16] Boundary relations and generalized resolvents of symmetric operators , 2006, math/0610299.
[17] J. M. Zamarro,et al. Simple approximation for magnetization curves and hysteresis loops , 1981 .
[18] Carsten Carstensen,et al. Averaging Techniques for the Effective Numerical Solution of Symm's Integral Equation of the First Kind , 2005, SIAM J. Sci. Comput..
[19] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[20] Dirk Praetorius,et al. An Effective Integrator for the Landau-Lifshitz-Gilbert Equation , 2012 .
[21] Andreas Prohl,et al. Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism , 2006, SIAM Rev..
[22] Andreas Prohl,et al. Convergence of an Implicit Finite Element Method for the Landau-Lifshitz-Gilbert Equation , 2006, SIAM J. Numer. Anal..
[23] D. R. Fredkin,et al. Hybrid method for computing demagnetizing fields , 1990 .
[24] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[25] Francisco-Javier Sayas,et al. The Validity of Johnson-Nédélec's BEM-FEM Coupling on Polygonal Interfaces , 2009, SIAM Rev..
[26] Carlos J. García-Cervera,et al. NUMERICAL MICROMAGNETICS: A REVIEW , 2007 .
[27] D. Gilbert. On subordinacy and spectral multiplicity for a class of singular differential operators , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[28] A. M. Roma,et al. Adaptive mesh refinement for micromagnetics simulations , 2006, IEEE Transactions on Magnetics.
[29] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[30] F. Brezzi,et al. On the coupling of boundary integral and finite element methods , 1979 .
[31] W. Donoghue. On the perturbation of spectra , 1965 .
[32] Michael Karkulik,et al. Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method , 2013, SIAM J. Numer. Anal..
[33] N. Aronszajn. On a problem of Weyl in the theory of singular : Sturm-Liouville equations , 1957 .
[34] J. M. Hammersley,et al. The Zeros of a Random Polynomial , 1956 .
[35] Dirk Praetorius,et al. Analysis of the Operator Δ^-1div Arising in Magnetic Models , 2004 .
[36] W. S. Venturini. Boundary Integral Equations , 1983 .
[37] François Alouges,et al. On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness , 1992 .
[38] B. Simon,et al. Operators with singular continuous spectrum, V. Sparse potentials , 1996 .
[39] J. Behrndt. REALIZATION OF NONSTRICT MATRIX NEVANLINNA FUNCTIONS AS WEYL FUNCTIONS OF SYMMETRIC OPERATORS IN PONTRYAGIN SPACES , 2009 .
[40] Stanisław Saks,et al. Theory of the Integral , 2011 .
[41] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[42] Ivan Cimrák,et al. A Survey on the Numerics and Computations for the Landau-Lifshitz Equation of Micromagnetism , 2007 .
[43] Michael Feischl,et al. Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd , 2013 .
[44] Thanh Tran,et al. A convergent finite element approximation for the quasi-static Maxwell-Landau-Lifshitz-Gilbert equations , 2012, Comput. Math. Appl..
[45] A. Hubert,et al. Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .
[46] Michael Feischl,et al. Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations☆ , 2013, Journal of magnetism and magnetic materials.
[47] Michael Karkulik,et al. Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity , 2012, 1211.4225.
[48] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[49] A. Poltoratski. Images of non-tangential sectors under Cauchy transforms , 2003 .
[50] François Alouges,et al. A new finite element scheme for Landau-Lifchitz equations , 2008 .
[51] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[52] M. Solomjak,et al. Spectral theory of selfadjoint operators in Hilbert space , 1987 .
[53] Andreas Prohl,et al. A Convergent Implicit Finite Element Discretization of the Maxwell-Landau-Lifshitz-Gilbert Equation , 2008, SIAM J. Numer. Anal..
[54] F. Gesztesy,et al. On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.
[55] V. Derkach,et al. The extension theory of Hermitian operators and the moment problem , 1995 .