Multiscale Modeling in Micromagnetics: Well-Posedness and Numerical Integration

Various applications ranging from spintronic devices, giant magnetoresistance (GMR) sensors, and magnetic storage devices, include magnetic parts on very different length scales. Since the consideration of the Landau-Lifshitz-Gilbert equation (LLG) constrains the maximum element size to the exchange length within the media, it is numerically not attractive to simulate macroscopic parts with this approach. On the other hand, the magnetostatic Maxwell equations do not constrain the element size, but therefore cannot describe the short-range exchange interaction accurately. A combination of both methods allows to describe magnetic domains within the micromagnetic regime by use of LLG and also considers the macroscopic parts by a nonlinear material law using Maxwell’s equations. In our work, we prove that under certain assumptions on the nonlinear material law, this multiscale version of LLG admits weak solutions. Our proof is constructive in the sense that we provide a linear-implicit numerical integrator for the multiscale model such that the numerically computable finite element solutions admit weak H-convergence —at least for a subsequence— towards a weak solution.

[1]  C. Remling Embedded singular continuous spectrum for one-dimensional Schrödinger operators , 1999 .

[2]  V. Pivovarchik,et al.  On multiplicity of a quantum graph spectrum , 2011 .

[3]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .

[4]  Dirk Praetorius,et al.  Convergent geometric integrator for the Landau‐Lifshitz‐Gilbert equation in micromagnetics , 2011 .

[5]  B. M. Levitan,et al.  Inverse Sturm-Liouville Problems , 1987 .

[6]  D. Yafaev Scattering Theory: Some Old and New Problems , 2000 .

[7]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[8]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[9]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[10]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[11]  Sam Palmer,et al.  Magnetic domains , 2012, Journal of High Energy Physics.

[12]  V. Gorbachuk,et al.  Boundary Value Problems for Operator Differential Equations , 1990 .

[13]  Andreas Prohl,et al.  Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation , 2007, Math. Comput..

[14]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[15]  S. Hassi,et al.  Boundary relations and their Weyl families , 2006 .

[16]  Boundary relations and generalized resolvents of symmetric operators , 2006, math/0610299.

[17]  J. M. Zamarro,et al.  Simple approximation for magnetization curves and hysteresis loops , 1981 .

[18]  Carsten Carstensen,et al.  Averaging Techniques for the Effective Numerical Solution of Symm's Integral Equation of the First Kind , 2005, SIAM J. Sci. Comput..

[19]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[20]  Dirk Praetorius,et al.  An Effective Integrator for the Landau-Lifshitz-Gilbert Equation , 2012 .

[21]  Andreas Prohl,et al.  Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism , 2006, SIAM Rev..

[22]  Andreas Prohl,et al.  Convergence of an Implicit Finite Element Method for the Landau-Lifshitz-Gilbert Equation , 2006, SIAM J. Numer. Anal..

[23]  D. R. Fredkin,et al.  Hybrid method for computing demagnetizing fields , 1990 .

[24]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[25]  Francisco-Javier Sayas,et al.  The Validity of Johnson-Nédélec's BEM-FEM Coupling on Polygonal Interfaces , 2009, SIAM Rev..

[26]  Carlos J. García-Cervera,et al.  NUMERICAL MICROMAGNETICS: A REVIEW , 2007 .

[27]  D. Gilbert On subordinacy and spectral multiplicity for a class of singular differential operators , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  A. M. Roma,et al.  Adaptive mesh refinement for micromagnetics simulations , 2006, IEEE Transactions on Magnetics.

[29]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[30]  F. Brezzi,et al.  On the coupling of boundary integral and finite element methods , 1979 .

[31]  W. Donoghue On the perturbation of spectra , 1965 .

[32]  Michael Karkulik,et al.  Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method , 2013, SIAM J. Numer. Anal..

[33]  N. Aronszajn On a problem of Weyl in the theory of singular : Sturm-Liouville equations , 1957 .

[34]  J. M. Hammersley,et al.  The Zeros of a Random Polynomial , 1956 .

[35]  Dirk Praetorius,et al.  Analysis of the Operator Δ^-1div Arising in Magnetic Models , 2004 .

[36]  W. S. Venturini Boundary Integral Equations , 1983 .

[37]  François Alouges,et al.  On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness , 1992 .

[38]  B. Simon,et al.  Operators with singular continuous spectrum, V. Sparse potentials , 1996 .

[39]  J. Behrndt REALIZATION OF NONSTRICT MATRIX NEVANLINNA FUNCTIONS AS WEYL FUNCTIONS OF SYMMETRIC OPERATORS IN PONTRYAGIN SPACES , 2009 .

[40]  Stanisław Saks,et al.  Theory of the Integral , 2011 .

[41]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[42]  Ivan Cimrák,et al.  A Survey on the Numerics and Computations for the Landau-Lifshitz Equation of Micromagnetism , 2007 .

[43]  Michael Feischl,et al.  Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd , 2013 .

[44]  Thanh Tran,et al.  A convergent finite element approximation for the quasi-static Maxwell-Landau-Lifshitz-Gilbert equations , 2012, Comput. Math. Appl..

[45]  A. Hubert,et al.  Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .

[46]  Michael Feischl,et al.  Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations☆ , 2013, Journal of magnetism and magnetic materials.

[47]  Michael Karkulik,et al.  Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity , 2012, 1211.4225.

[48]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[49]  A. Poltoratski Images of non-tangential sectors under Cauchy transforms , 2003 .

[50]  François Alouges,et al.  A new finite element scheme for Landau-Lifchitz equations , 2008 .

[51]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[52]  M. Solomjak,et al.  Spectral theory of selfadjoint operators in Hilbert space , 1987 .

[53]  Andreas Prohl,et al.  A Convergent Implicit Finite Element Discretization of the Maxwell-Landau-Lifshitz-Gilbert Equation , 2008, SIAM J. Numer. Anal..

[54]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[55]  V. Derkach,et al.  The extension theory of Hermitian operators and the moment problem , 1995 .