OBIRS-feedback, une méthode de reformulation utilisant une ontologie de domaine

The lack of accuracy of an information retrieval system (IRS) may be due to an inadequate formulation of user's queries. Reformulation or query expansion is a possible solution to this problem. In this paper, we introduce a reformulation method based upon a domain ontology. This conceptual relevance feedback method uses a set of documents a user has deemed relevant to search a set of concepts that maximizes IRS performances. Those performances are assessed in an original way, using indicators that are formalized. This method has been evaluated using our environment OBIRS (Ontology Based Information Retrieval System) as base system, MeSH as domain ontology and MuCHMORE as a test collection. MOTS-CLES: Reformulation de requete, ontologie, Systemes de Recherche d'Information, requetes conceptuelles, expansion de requetes.

[1]  Tony Veale,et al.  An Intrinsic Information Content Metric for Semantic Similarity in WordNet , 2004, ECAI.

[2]  Ellen M. Voorhees,et al.  Query expansion using lexical-semantic relations , 1994, SIGIR '94.

[3]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[4]  Euripides G. M. Petrakis,et al.  Information Retrieval by Semantic Similarity , 2006, Int. J. Semantic Web Inf. Syst..

[5]  Ellen M. Voorhees,et al.  The TREC 2005 robust track , 2006, SIGF.

[6]  Kenneth Wai-Ting Leung,et al.  Deriving Concept-Based User Profiles from Search Engine Logs , 2010, IEEE Transactions on Knowledge and Data Engineering.

[7]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[8]  Daniel Gooch,et al.  Communications of the ACM , 2011, XRDS.

[9]  Josiane Mothe,et al.  Modeling context through domain ontologies , 2006, Information Retrieval.

[10]  Mohand Boughanem,et al.  An Information Retrieval Driven by Ontology: from Query to Document Expansion , 2007, RIAO.

[11]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[12]  Philip Resnik,et al.  Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language , 1999, J. Artif. Intell. Res..

[13]  Mohand Boughanem,et al.  Exploitation des Liens Sémantiques pour l'Expansion de Requêtes dans un Système de Recherche d'Information , 2003, INFORSID.

[14]  Fausto Giunchiglia,et al.  Concept Search , 2009, ESWC.

[15]  Sylvie Ranwez,et al.  Ontological Distance Measures for Information Visualisation on Conceptual Maps , 2006, OTM Workshops.

[16]  ChengXiang Zhai,et al.  A study of methods for negative relevance feedback , 2008, SIGIR '08.

[17]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[18]  Rudi Studer,et al.  The Semantic Web: Research and Applications , 2004, Lecture Notes in Computer Science.

[19]  P. Smith,et al.  A review of ontology based query expansion , 2007, Inf. Process. Manag..

[20]  Ahmed Abdelali,et al.  Improving query precision using semantic expansion , 2007, Inf. Process. Manag..

[21]  Mohamed Farah,et al.  Ordinal Regression Based Model for Personalized Information Retrieval , 2009, ICTIR.

[22]  Nenad Stojanovic,et al.  On the query refinement in the ontology-based searching for information , 2005, Inf. Syst..

[23]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[24]  Sylvie Ranwez,et al.  User centered and ontology based information retrieval system for life sciences , 2010, BMC Bioinformatics.