Glucagon-like peptide 1 (7–36) amide (GLP-1) and exendin-4 stimulate serotonin release in rat hypothalamus

[1]  Michelle E. Quinlan,et al.  Bidirectional Dopaminergic Modulation of Excitatory Synaptic Transmission in Orexin Neurons , 2006, The Journal of Neuroscience.

[2]  M. Vacca,et al.  Peptide YY (3 -36) inhibits dopamine and norepinephrine release in the hypothalamus. , 2005, European journal of pharmacology.

[3]  H. Yoshimatsu,et al.  Glucagon‐like peptide‐1, corticotropin‐releasing hormone, and hypothalamic neuronal histamine interact in the leptin‐signaling pathway to regulate feeding behavior , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[4]  A. N. van den Pol,et al.  Glucagon-Like Peptide 1 Excites Hypocretin/Orexin Neurons by Direct and Indirect Mechanisms: Implications for Viscera-Mediated Arousal , 2004, The Journal of Neuroscience.

[5]  M. Vacca,et al.  Resistin, but not adiponectin, inhibits dopamine and norepinephrine release in the hypothalamus. , 2004, European journal of pharmacology.

[6]  M. Vacca,et al.  Effects of ghrelin and amylin on dopamine, norepinephrine and serotonin release in the hypothalamus. , 2002, European journal of pharmacology.

[7]  H. Kato,et al.  Intracerebroventricular injection of glucagon-like peptide-1 decreases monoamine concentrations in the hypothalamus of chicks , 2002, British poultry science.

[8]  D. Smith,et al.  Effects of intracerebroventricular injection of glucagon like peptide-1 and its related peptides on serotonin metabolism and on levels of amino acids in the rat hypothalamus , 2002, Brain Research.

[9]  W. Pan,et al.  Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier , 2002, Journal of Molecular Neuroscience.

[10]  M. Vacca,et al.  Effects of cocaine- and amphetamine-regulated transcript peptide, leptin and orexins on hypothalamic serotonin release. , 2001, European journal of pharmacology.

[11]  M. Vacca,et al.  Cocaine- and amphetamine-regulated transcript peptide-(55-102) and thyrotropin releasing hormone inhibit hypothalamic dopamine release. , 2000, European journal of pharmacology.

[12]  M. Vacca,et al.  Leptin inhibits norepinephrine and dopamine release from rat hypothalamic neuronal endings. , 1999, European journal of pharmacology.

[13]  P S Kalra,et al.  Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. , 1999, Endocrine reviews.

[14]  P. Shughrue,et al.  Distribution of pre‐pro‐glucagon and glucagon‐like peptide‐1 receptor messenger RNAs in the rat central nervous system , 1999, The Journal of comparative neurology.

[15]  D Conen,et al.  Glucagon-like peptide-1: a potent regulator of food intake in humans , 1999, Gut.

[16]  S. Bloom,et al.  Leptin interacts with glucagon‐like peptide‐1 neurons to reduce food intake and body weight in rodents , 1997, FEBS letters.

[17]  P. J. Larsen,et al.  Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem , 1997, Neuroscience.

[18]  I. Merchenthaler,et al.  Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus. , 1996, Endocrinology.

[19]  J. Holst,et al.  Glucagon-Like Peptide I Receptors in the Subfornical Organ and the Area Postrema Are Accessible to Circulating Glucagon-Like Peptide I , 1996, Diabetes.

[20]  D. Smith,et al.  A role for glucagon-like peptide-1 in the central regulation of feeding , 1996, Nature.

[21]  K. Simansky,et al.  Serotonergic control of the organization of feeding and satiety , 1995, Behavioural Brain Research.

[22]  B. Stanley,et al.  Evidence that neuropeptide Y and dopamine in the perifornical hypothalamus interact antagonistically in the control of food intake , 1993, Brain Research.

[23]  B. Göke,et al.  Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. , 1993, The Journal of biological chemistry.

[24]  M. Nauck,et al.  Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. , 1993, The Journal of clinical endocrinology and metabolism.

[25]  T. Shiraishi Noradrenergic neurons modulate lateral hypothalamic chemical and electrical stimulation-induced feeding by sated rats , 1991, Brain Research Bulletin.

[26]  S. Bloom,et al.  Characterization of glucagon-like peptide-1-(7–36)amide in the hypothalamus , 1989, Brain Research.

[27]  D. Drucker,et al.  Glucagon gene expression in vertebrate brain. , 1988, The Journal of biological chemistry.

[28]  S. Bloom,et al.  GLUCAGON-LIKE PEPTIDE-1 7-36: A PHYSIOLOGICAL INCRETIN IN MAN , 1987, The Lancet.

[29]  D. Faulds,et al.  Dexfenfluramine. An updated review of its therapeutic use in the management of obesity. , 1996, Drugs.

[30]  B. T. Davies,et al.  Modulation of feeding by hypothalamic paraventricular nucleus α1- and α2-adrenergic receptors , 1993 .