BCC-Splines: Generalization of B-Splines for the Body-Centered Cubic Lattice

Recently, the B-spline family of reconstruction filters has been generalized for the hexagonal lattice, which is optimal for sampling 2D circularly band-limited signals. In this paper, we extend this generalization to the body-centered cubic (BCC) lattice, which is optimal for sampling spherically band-limited 3D signals. We call the obtained new reconstruction filters BCC-splines. Although the explicit analytical formulas are not defined yet, we evaluate the discrete approximation of these filters in the frequency domain in order to analyze their performance in a volume-rendering application. Our experimental results show that the BCC-splines can be superior over the box splines previously proposed for the BCC lattice.

[1]  T. Moller,et al.  Design of accurate and smooth filters for function and derivative reconstruction , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[2]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[3]  Thierry Blu,et al.  Generalized interpolation: Higher quality at no additional cost , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[4]  Thomas Theußl,et al.  Reconstruction Schemes for High Quality Raycasting of the Body-Centered Cubic Grid , 2022 .

[5]  Ramsay Dyer,et al.  Linear and cubic box splines for the body centered cubic lattice , 2004, IEEE Visualization 2004.

[6]  T. Hales Cannonballs and Honeycombs , 2000 .

[7]  Markus Hadwiger,et al.  Prefiltered B-Spline Reconstruction for Hardware-Accelerated Rendering of Optimally Sampled Volumetric Data , 2006 .

[8]  Rik Van de Walle,et al.  Accepted for Publication in Ieee Transactions on Image Processing Hex-splines: a Novel Spline Family for Hexagonal Lattices , 2022 .

[9]  Eduard Gröller,et al.  Optimal regular volume sampling , 2001, Proceedings Visualization, 2001. VIS '01..

[10]  Balázs Csébfalvi,et al.  Prefiltered Gaussian reconstruction for high-quality rendering of volumetric data sampled on a body-centered cubic grid , 2005, VIS 05. IEEE Visualization, 2005..

[11]  T. Hales The sphere packing problem , 1992 .

[12]  Alireza Entezari,et al.  A Granular Three Dimensional Multiresolution Transform , 2006, EuroVis.

[13]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[14]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[15]  Dimitri Van De Ville,et al.  Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[16]  David S. Ebert,et al.  VolQD: direct volume rendering of multi-million atom quantum dot simulations , 2005, VIS 05. IEEE Visualization, 2005..

[17]  Alireza Entezari,et al.  Extensions of the Zwart-Powell Box Spline for Volumetric Data Reconstruction on the Cartesian Lattice , 2006, IEEE Transactions on Visualization and Computer Graphics.