Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study.

[1]  Edward E. Uthe,et al.  An automatic method for determining the mixing depth from lidar observations , 1979 .

[2]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[3]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[4]  Steven A. Ackerman,et al.  Radiative Effects of Airborne Dust on Regional Energy Budgets at the Top of the Atmosphere , 1992 .

[5]  A. Ansmann,et al.  Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio , 1992 .

[6]  J. Seinfeld,et al.  Dynamics of Tropospheric Aerosols , 1995 .

[7]  Anthony S. Wexler,et al.  Dynamics of Tropospheric Aerosols , 1995 .

[8]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[9]  P. Crutzen,et al.  Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry , 1997 .

[10]  A. Stohl,et al.  Validation of the lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data , 1998 .

[11]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[12]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[13]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky-radiance measurements , 1999 .

[14]  A. Ansmann,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.

[15]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[16]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[17]  Paul Ginoux,et al.  Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the NIMBUS-7 TOMS Absorbing Aerosol Product , 2001 .

[18]  G. Kallos,et al.  A model for prediction of desert dust cycle in the atmosphere , 2001 .

[19]  Slobodan Nickovic,et al.  An Alternative Approach to Nonhydrostatic Modeling , 2001 .

[20]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[21]  J. Lelieveld,et al.  Global Air Pollution Crossroads over the Mediterranean , 2002, Science.

[22]  A. Ansmann,et al.  Dual‐wavelength Raman lidar observations of the extinction‐to‐backscatter ratio of Saharan dust , 2002 .

[23]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[24]  Yoram J. Kaufman,et al.  An Enhanced Contextual Fire Detection Algorithm for MODIS , 2003 .

[25]  A. Dell'Acqua,et al.  Size-segregated aerosol mass closure and chemical composition in Monte Cimone (I) during MINATROC , 2003 .

[26]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.

[27]  I. Balin Measurement and analysis of aerosols, cirrus-contrails, water vapor and temperature in the upper troposphere with the Jungfraujoch LIDAR system , 2004 .

[28]  O. Jorba,et al.  Summertime re-circulations of air pollutants over the north-eastern Iberian coast observed from systematic EARLINET lidar measurements in Barcelona , 2004 .

[29]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms. , 2004, Applied optics.

[30]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004 .

[31]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004, Applied optics.

[32]  Petra Seibert,et al.  Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode , 2004 .

[33]  A. Stohl,et al.  Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2 , 2005 .

[34]  E. Landulfo,et al.  Tropospheric aerosol observations in São Paulo, Brazil using a compact lidar system , 2005 .

[35]  W. Maenhaut,et al.  Aerosol mass closure and reconstruction of the light scattering coefficient over the Eastern Mediterranean Sea during the MINOS campaign , 2005 .

[36]  Giorgio Fiocco,et al.  Influence of the vertical profile of Saharan dust on the visible direct radiative forcing , 2005 .

[37]  U. Lohmann,et al.  Solid Ammonium Sulfate Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation , 2006, Science.

[38]  L. Mona,et al.  Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements , 2006 .

[39]  Alexander Smirnov,et al.  Aeronet's Version 2.0 quality assurance criteria , 2006, SPIE Asia-Pacific Remote Sensing.

[40]  H. Hansson,et al.  High Natural Aerosol Loading over Boreal Forests , 2006, Science.

[41]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[42]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[43]  M. Steinbacher,et al.  Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch , 2007 .

[44]  Doina Nicolae,et al.  EARLINET correlative measurements for CALIPSO , 2007, SPIE Remote Sensing.

[45]  D. Nicolae,et al.  Air mass modification processes over the Balkans area detected by aerosol Lidar techniques , 2008 .

[46]  L. Mona,et al.  Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002) , 2008 .

[47]  Regional modelling of Saharan Dust: forcing and feedback , 2008 .

[48]  Timo Mäkelä,et al.  Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean , 2008 .

[49]  C. Zerefos,et al.  Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece , 2009 .

[50]  F. Olmo,et al.  Extreme Saharan dust event over the southern Iberian Peninsula in september 2007: active and passive remote sensing from surface and satellite , 2009 .

[51]  Albert Ansmann,et al.  Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 , 2009 .

[52]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[53]  D. Balis,et al.  Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece , 2009 .

[54]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[55]  J. Seinfeld,et al.  Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) , 2009 .

[56]  G. Pejanovic,et al.  Assimilation of satellite information on mineral dust using dynamic relaxation approach , 2010 .

[57]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[58]  Albert Ansmann,et al.  Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010 , 2011 .

[59]  M. Wendisch,et al.  Regional modelling of Saharan dust and biomass-burning smoke , 2011 .

[60]  V. Freudenthaler,et al.  Regional modelling of Saharan dust and biomass-burning smoke , 2011 .

[61]  J. Burrows,et al.  Megacities as hot spots of air pollution in the East Mediterranean , 2011 .

[62]  Rodanthi-Elisavet Mamouri,et al.  Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis , 2011 .

[63]  T. Petäjä,et al.  Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign , 2011 .

[64]  Tianle Yuan,et al.  Aerosols from Overseas Rival Domestic Emissions over North America , 2012, Science.

[65]  P. Seifert,et al.  Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes , 2012 .

[66]  A. Stohl,et al.  Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010 , 2012 .

[67]  M. Cubison,et al.  Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008 , 2012 .

[68]  Angelo Riccio,et al.  Automatic detection of atmospheric boundary layer height using ceilometer backscatter data assisted by a boundary layer model , 2012 .

[69]  Michaël Sicard,et al.  Algorithm and software for the retrieval of vertical aerosol properties using combined lidar/radiometer data: dissemination in EARLINET , 2012 .

[70]  D. Müller,et al.  Estimation of radiative forcing by the dust and non-dust content in mixed East Asian pollution plumes on the basis of depolarization ratios measured with lidar , 2012 .

[71]  L. Mona,et al.  Lidar Measurements for Desert Dust Characterization: An Overview , 2012 .

[72]  A. Ansmann,et al.  Optimizing Saharan dust CALIPSO retrievals , 2013 .

[73]  Carbonaceous Aerosols Over the Mediterranean and Black Sea , 2013 .

[74]  A. Nenes,et al.  Droplet number uncertainties associated with CCN: an assessment using observations and a global model adjoint , 2013 .

[75]  Albert Ansmann,et al.  Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations. , 2013, Applied optics.

[76]  A. Comerón,et al.  Wavelet Correlation Transform Method and Gradient Method to Determine Aerosol Layering from Lidar Returns: Some Comments , 2013 .

[77]  R. Engelmann,et al.  Radiative effect of aerosols above the northern and southern Atlantic Ocean as determined from shipborne lidar observations , 2013 .

[78]  Doina Nicolae,et al.  Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations , 2013 .

[79]  Y. N. Ahammed,et al.  Aerosol vertical profiles strongly affect their radiative forcing uncertainties: study by using ground-based lidar and other measurements , 2013 .

[80]  A. Stohl,et al.  Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajokull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements , 2013 .

[81]  A. Berjón,et al.  Sensitivity of aerosol retrieval to geometrical configuration of ground-based sun/sky radiometer observations , 2013 .

[82]  O. Dubovik,et al.  Measurements on pointing error and field of view of Cimel-318 Sun photometers in the scope of AERONET , 2013 .

[83]  A. Ansmann,et al.  Low Arabian dust extinction‐to‐backscatter ratio , 2013 .

[84]  P. Seifert,et al.  Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust , 2013 .

[85]  José María Baldasano Recio,et al.  Application of a synergetic lidar and sunphotometer algorithm for the characterization of a dust event over Athens, Greece , 2013 .

[86]  D. Müller,et al.  Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry , 2013 .

[87]  A. Ansmann,et al.  Optimizing CALIPSO Saharan dust retrievals , 2013 .

[88]  G. Gobbi,et al.  Some remarks about lidar data preprocessing and different implementations of the gradient method for determining the aerosol layers , 2014 .

[89]  A. Prévôt,et al.  OF CARBONACEOUS AEROSOLS , 2015 .

[90]  17 - Aerosol vertical profiles in the Arctic , 2016 .

[91]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .