A direct method to predict cyclic steady states of elastoplastic structures

[1]  Leonardo Leonetti,et al.  A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis , 2011 .

[2]  A. Folkesson Analysis of numerical methods , 2011 .

[3]  J. Simon,et al.  Numerical lower bound shakedown analysis of engineering structures , 2011 .

[4]  W. Reinhardt,et al.  Non-cyclic shakedown/ratcheting boundary determination – Part 1: Analytical approach , 2011 .

[5]  W. Reinhardt,et al.  Non-cyclic shakedown/ratcheting boundary determination - Part 2: Numerical implementation , 2011 .

[6]  Donald Mackenzie,et al.  A direct method for the evaluation of lower and upper bound ratchet limits , 2011 .

[7]  Jeries Abou-Hanna,et al.  A simplified ratcheting limit method based on limit analysis using modified yield surface , 2011 .

[8]  J. Henson,et al.  Plasticity , 2010, Neurology.

[9]  W. Reinhardt,et al.  Non-Cyclic Shakedown-Ratcheting Boundary Determination: Analytical Examples , 2010 .

[10]  Hung Nguyen-Xuan,et al.  An edge‐based smoothed finite element method for primal–dual shakedown analysis of structures , 2010 .

[11]  Dieter Weichert,et al.  Application of the interior-point method to shakedown analysis of pavements , 2008 .

[12]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[13]  Panos M. Pardalos,et al.  Second-order cone programming approaches to static shakedown analysis in steel plasticity , 2005, Optim. Methods Softw..

[14]  H. Nguyen-Dang,et al.  A primal–dual algorithm for shakedown analysis of structures , 2004 .

[15]  C. Polizzotto Variational methods for the steady state response of elastic-plastic solids subjected to cyclic loads , 2003 .

[16]  Jean-Jacques Thomas,et al.  Détermination de la réponse asymptotique d'une structure anélastique sous chargement thermomécanique cyclique , 2002 .

[17]  Jose Luis Silveira,et al.  An algorithm for shakedown analysis with nonlinear yield functions , 2002 .

[18]  Konstantinos V. Spiliopoulos A Simplified Method to Predict the Steady Cyclic Stress State of Creeping Structures , 2002 .

[19]  Haofeng Chen,et al.  A method for the evaluation of a ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading , 2001 .

[20]  Haofeng Chen,et al.  A minimum theorem for cyclic load in excess of shakedown, with application to the evaluation of a ratchet limit , 2001 .

[21]  Paolo Fuschi,et al.  Limit analysis for a general class of yield conditions , 2000 .

[22]  Alan R.S. Ponter,et al.  Shakedown Limits for a General Yield Condition: Implementation and Application for a Von Mises Yield Condition , 2000 .

[23]  Robert Hamilton,et al.  The elastic compensation method for limit and shakedown analysis: A review , 2000 .

[24]  Simplified Methods for the Steady State Inelastic Analysis of Cyclically Loaded Structures , 2000 .

[25]  Giulio Maier,et al.  Static shakedown theorems in piecewise linearized poroplasticity , 1998 .

[26]  Alan R.S. Ponter,et al.  Shakedown state simulation techniques based on linear elastic solutions , 1997 .

[27]  Donald Mackenzie,et al.  A method of estimating limit loads by iterative elastic analysis. I—Simple examples , 1992 .

[28]  Donald Mackenzie,et al.  A method of estimating limit loads by iterative elastic analysis. III—Torispherical heads under internal pressure , 1992 .

[29]  J. Zarka,et al.  A new approach in inelastic analysis of structures , 1990 .

[30]  Jan A. König,et al.  Shakedown of Elastic-Plastic Structures , 1987 .

[31]  Philip G. Hodge,et al.  Limit Analysis of Structures at Thermal Cycling , 1980 .

[32]  G. Inglebert,et al.  On a simplified inelastic analysis of structures , 1980 .

[33]  Giulio Maier,et al.  Dynamic non-shakedown theorem for elastic perfectly-plastic continua , 1974 .

[34]  G. Maier A shakedown matrix theory allowing for workhardening and second-order geometric effects , 1974 .

[35]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[36]  H. Keller,et al.  Analysis of Numerical Methods , 1967 .

[37]  C. O. Frederick,et al.  Convergent internal stresses and steady cyclic states of stress , 1966 .

[38]  W. T. Koiter General theorems for elastic plastic solids , 1960 .

[39]  D. C. Drucker,et al.  A DEFINITION OF STABLE INELASTIC MATERIAL , 1957 .

[40]  J. Joseph,et al.  Fourier Series , 2018, Series and Products in the Development of Mathematics.

[41]  Ernst Melan,et al.  Zur Plastizität des räumlichen Kontinuums , 1938 .