Role of re-growth interface preparation process for spectral line-width reduction of single InAs site-controlled quantum dots

We present growth and optical characterization measurements of single InAs site-controlled quantum dots (SCQDs) grown by molecular beam epitaxy on GaAs (001) patterned substrates by atomic force microscopy oxidation lithography. InAs SCQDs directly grown on the patterned surface were used as a seed layer and strain template for the nucleation of optically active single InAs SCQDs. The preservation of the initial geometry of the engraved pattern motifs after the re-growth interface preparation process, the lack of buffer layer growth prior to InAs seed layer deposition and the development of suitable growth conditions provide us an improvement of the SCQDs’ active layer optical properties while retaining a high ratio of single occupation (89%). In this work a fivefold reduction of the average optical line-width from 870 μeV to 156 μeV for InAs SCQDs located 15 nm from the re-growth interface is obtained by increasing the temperature of the initial thermal treatment step of the re-growth interface from 490 °C to 530 °C.

[1]  B. Alén,et al.  Study of Growth Parameters for Single InAs QD Formation on GaAs(001) Patterned Substrates by Local Oxidation Lithography , 2015 .

[2]  B. Alén,et al.  High quality factor GaAs-based photonic crystal microcavities by epitaxial re-growth. , 2013, Optics express.

[3]  J. Martínez‐Pastor,et al.  Exciton and multiexciton optical properties of single InAs/GaAs site-controlled quantum dots , 2013 .

[4]  P. Vora,et al.  Leveraging crystal anisotropy for deterministic growth of InAs quantum dots with narrow optical linewidths. , 2013, Nano letters.

[5]  A. Schramm,et al.  Size-dependent properties of single InAs quantum dots grown in nanoimprint lithography patterned GaAs pits , 2013, Nanotechnology.

[6]  N. Hanagata,et al.  Oxide-based inorganic/organic and nanoporous spherical particles: synthesis and functional properties , 2013, Science and technology of advanced materials.

[7]  O. Schmidt,et al.  Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots. , 2013, Nano letters.

[8]  M. Kamp,et al.  In(Ga)As/GaAs site‐controlled quantum dots with tailored morphology and high optical quality , 2012 .

[9]  K. Hirakawa,et al.  Size-Limiting Effect of Site-Controlled InAs Quantum Dots Grown at High Temperatures by Molecular Beam Epitaxy , 2012 .

[10]  A. Schramm,et al.  Large array of single, site-controlled InAs quantum dots fabricated by UV-nanoimprint lithography and molecular beam epitaxy , 2012, Nanotechnology.

[11]  Yucheng Ding,et al.  Ordering, positioning and uniformity of quantum dot arrays , 2012 .

[12]  J. Martínez‐Pastor,et al.  Different strategies towards the deterministic coupling of a single Quantum Dot to a photonic crystal cavity mode , 2011, 2011 13th International Conference on Transparent Optical Networks.

[13]  Chien-Chia Cheng,et al.  Effects of nano-pattern size on the property of InAs site-controlled quantum dots , 2011 .

[14]  A. Schramm,et al.  Nanoimprint lithography patterned GaAs templates for site-controlled InAs quantum dots , 2011 .

[15]  Daniel M. Schaadt,et al.  Growth and annealing of InAs quantum dots on pre-structured GaAs substrates , 2011 .

[16]  M. Kamp,et al.  Site-controlled In(Ga)As/GaAs quantum dots for integration into optically and electrically operated devices , 2011 .

[17]  M. Kamp,et al.  Narrow spectral linewidth from single site-controlled In(Ga)As quantum dots with high uniformity , 2011 .

[18]  L. Seravalli,et al.  Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping , 2011 .

[19]  D. Ritchie,et al.  Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates , 2011, Nanotechnology.

[20]  D. Ritchie,et al.  An entangled-light-emitting diode , 2010, Nature.

[21]  Gabriel Bester,et al.  Lower bound for the excitonic fine structure splitting in self-assembled quantum dots. , 2010, Physical review letters.

[22]  A. G. Cullis,et al.  GaAs(0 0 1) planarization after conventional oxide removal utilising self-governed InAs QD site selection , 2010 .

[23]  L. Mereni,et al.  A site-controlled quantum dot system offering both high uniformity and spectral purity , 2009, 0906.4066.

[24]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[25]  J. Martínez‐Pastor,et al.  Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates. , 2009, ACS nano.

[26]  J. Faist,et al.  Retraction Note: Polarization-entangled photons produced with high-symmetry site-controlled quantum dots , 2009, Nature Photonics.

[27]  Robin L. Williams,et al.  Directed self‐assembly of single quantum dots for telecommunication wavelength optical devices , 2009 .

[28]  J. Martín-Sánchez,et al.  Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography , 2009, Nanotechnology.

[29]  Oliver G. Schmidt,et al.  Advanced quantum dot configurations , 2009 .

[30]  O. Schmidt,et al.  Gallium-assisted deoxidation of patterned substrates for site-controlled growth of InAs quantum dots , 2009 .

[31]  J. Martín-Sánchez,et al.  Improvement of InAs quantum dots optical properties in close proximity to GaAs(0 0 1) substrate surface , 2008 .

[32]  S. Sanguinetti,et al.  Spectral diffusion and line broadening in single self-assembled GaAs∕AlGaAs quantum dot photoluminescence , 2008 .

[33]  Andrew G. White,et al.  Quantum Information: Source of triggered entangled photon pairs? , 2007, Nature.

[34]  I. Favero,et al.  Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot , 2006, cond-mat/0610346.

[35]  Oliver G. Schmidt,et al.  Structural and optical properties of In(Ga)As∕GaAs quantum dots treated by partial capping and annealing , 2006 .

[36]  Tatsuya Usuki,et al.  Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique , 2006, Nanoscale Research Letters.

[37]  A. Schliwa,et al.  Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. , 2005, Physical review letters.

[38]  O. Schmidt,et al.  Self-assembled InAs quantum dots on patterned GaAs(001) substrates: Formation and shape evolution , 2005 .

[39]  M. S. Skolnick,et al.  Inversion of exciton level splitting in quantum dots , 2005, quant-ph/0601198.

[40]  A. Schliwa,et al.  Correlation of structural and few-particle properties of self-organizedInAs∕GaAsquantum dots , 2005 .

[41]  A. Badolato,et al.  Optical properties of single InAs quantum dots in close proximity to surfaces , 2004 .

[42]  O. Schmidt,et al.  Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs (0 0 1) substrates , 2004 .

[43]  M. Lagally,et al.  Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. , 2004, Physical review letters.

[44]  Andrew J. Shields,et al.  Quantum dots as a photon source for passive quantum key encoding , 2002 .

[45]  Oliver G. Schmidt,et al.  Vertical alignment of laterally ordered InAs and InGaAs quantum dot arrays on patterned (001) GaAs substrates , 2002 .

[46]  Alfred Forchel,et al.  Temperature dependence of the exciton homogeneous linewidth in In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots , 2002 .

[47]  T. Jacobson,et al.  TeV astrophysics constraints on Planck scale Lorentz violation , 2001, hep-ph/0112207.

[48]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[49]  Y. Yamamoto,et al.  Triggered single photons from a quantum dot. , 2000, Physical review letters.

[50]  A. Forchel,et al.  Zeeman splitting of excitons and biexcitons in single In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots , 1998 .

[51]  Pierre Petroff,et al.  Electronic states tuning of InAs self-assembled quantum dots , 1998 .

[52]  C. McConville,et al.  Atomic hydrogen cleaning of polar III–V semiconductor surfaces , 1998 .

[53]  D. Bimberg,et al.  Theory of random population for quantum dots , 1997 .

[54]  A. Ruiz,et al.  Atomic layer molecular beam epitaxy (Almbe) of III–V compounds: Growth modes and applications , 1989 .

[55]  C. Neri,et al.  A comparative study of the interaction kinetics of As2 and As4 molecules with Ga-rich GaAs (001) surfaces☆ , 1989 .

[56]  O. Schmidt,et al.  Controlling the formation of quantum dot pairs using nanohole templates , 2012 .