Ab initio evaluation of absorption and emission transitions for molecular solutes, including separate consideration of orientational and inductive solvent effects

An ab initio computation procedure to obtain electronic transition wave numbers in solution is presented and discussed. The continuum description of the bulk solvent is adopted, and solute–solvent interaction is reduced to a closed‐form interaction operator added to the solute Hamiltonian. The resulting Schrödinger equations are solved variationally. No limitations are imposed on the shape of the solvent cavity or on the level of accuracy of the ab initio procedure.

[1]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[2]  H. Mcconnell Effect of Polar Solvents on the Absorption Frequency of n→π Electronic Transitions , 1952 .

[3]  Yuzuru Ooshika,et al.  Absorption Spectra of Dyes in Solution , 1954 .

[4]  M. Kasha,et al.  The Rôle of Hydrogen Bonding in the n → π* Blue-shift Phenomenon1 , 1955 .

[5]  E. G. McRae Theory of Solvent Effects on Molecular Electronic Spectra. Frequency Shifts , 1957 .

[6]  Étude théorique de l’influence du solvant et de la concentration sur les spectres d’absorption des solutions diluées , 1957 .

[7]  H. C. Longuet-Higgins,et al.  Electronic Spectral Shifts of Nonpolar Molecules in Nonpolar Solvents , 1957 .

[8]  A. Kawski,et al.  Zur Theorie des Einflusses von Lösungsmitteln auf die Elektronenspektren der Moleküle , 1962 .

[9]  Sadhan Basu,et al.  Theory of Solvent Effects on Molecular Electronic Spectra , 1964 .

[10]  Takehiko Abe,et al.  Theory of Solvent Effects on Molecular Electronic Spectra. Frequency Shifts , 1965 .

[11]  W. Person,et al.  Molecular Interactions and Electronic Spectra , 1970 .

[12]  R. Becker,et al.  Formaldehyde: Comprehensive Spectral Investigation as a Function of Solvent and Temperature , 1972 .

[13]  K. Morokuma,et al.  Extended Hartree-Fock theory for excited states , 1972 .

[14]  B. L. Burrows,et al.  Solvent-Shift Effects on Electronic Spectra and Excited-State Dipole Moments and Polarizabilities , 1973 .

[15]  K. Morokuma,et al.  Molecular orbital studies of hydrogen bonds. V. Analysis of the hydrogen-bond energy between lower excited states of formaldehyde and water , 1973 .

[16]  I. J. Doonan,et al.  Aspects of quantum chemistry , 1977 .

[17]  R. Cimiraglia,et al.  Dependence of the electrostatic molecular potential upon the basis set and the method of calculation of the wave function. Case of the ground 3A1(π π*) and 1A1(π π*) states of formaldehyde , 1978 .

[18]  W. G. Laidlaw,et al.  On the application of the variational principle to a type of nonlinear ’’Schrödinger equation’’ , 1979 .

[19]  R. Cimiraglia,et al.  On the ab initio evaluation of the solvent shift of electronic absorption spectra , 1981 .

[20]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[21]  Jacopo Tomasi,et al.  Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes , 1982 .

[22]  S. Miertus,et al.  The effect of solvent on the internal rotation of formamide: an ab initio study using a polarizable continuum model☆ , 1982 .