Control of nanostructure and pinning properties in solution deposited YBa2Cu3O7−x nanocomposites with preformed perovskite nanoparticles

[1]  T. Puig,et al.  Accelerated growth by flash heating of high critical current trifluoroacetate solution derived epitaxial superconducting YBa2Cu3O7 films , 2019, Journal of Materials Chemistry C.

[2]  K. Higashikawa,et al.  Enhancement of In-Field Critical Current Density of BaZrO3-Added (Y, Gd) BCO-Coated Conductors by Using a Multi-Coating TFA-MOD Method , 2018, IEEE Transactions on Applied Superconductivity.

[3]  T. Puig,et al.  Epitaxial YBa2Cu3O7−x nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions , 2018 .

[4]  K. Nakaoka,et al.  Control of artificial pinning centers in REBCO coated conductors derived from the trifluoroacetate metal-organic deposition process , 2018 .

[5]  T. Puig,et al.  Disentangling vortex pinning landscape in chemical solution deposited superconducting YBa2Cu3O7−x films and nanocomposites , 2018 .

[6]  S. Awaji,et al.  Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition , 2017 .

[7]  J. MacManus‐Driscoll,et al.  Materials design for artificial pinning centres in superconductor PLD coated conductors , 2017 .

[8]  Judy Z. Wu,et al.  Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films , 2017 .

[9]  A. Ichinose,et al.  Approaches in controllable generation of artificial pinning center in REBa2Cu3Oy-coated conductor for high-flux pinning , 2017 .

[10]  B. Holzapfel,et al.  Large critical current densities and pinning forces in CSD-grown superconducting GdBa2Cu3O7−x-BaHfO3 nanocomposite films , 2017 .

[11]  A. Koshelev,et al.  Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors , 2017, 1708.01653.

[12]  V. Selvamanickam,et al.  Je(4.2 K, 31.2 T) beyond 1 kA/mm2 of a ~3.2 μm thick, 20 mol% Zr-added MOCVD REBCO coated conductor , 2017, Scientific Reports.

[13]  Bernat Mundet,et al.  Probing localized strain in solution-derived YB a 2 C u 3 O 7 -δ nanocomposite thin films , 2017 .

[14]  J. Hänisch,et al.  Optimizing nanocomposites through nanocrystal surface chemistry : superconducting YBa2Cu3O7 thin films via low-fluorine metal organic deposition and preformed metal oxide nanocrystals , 2017 .

[15]  Y. Shiohara,et al.  Refining Process of BaZrO3 Particles in Coated Conductors by TFA-MOD Method , 2017, IEEE Transactions on Applied Superconductivity.

[16]  S. Ricart,et al.  Hybrid YBa2Cu3O7 Superconducting–Ferromagnetic Nanocomposite Thin Films Prepared from Colloidal Chemical Solutions , 2017 .

[17]  Hiroyuki Ohsaki,et al.  High-Temperature Superconductivity: A Roadmap for Electric Power Sector Applications, 2015–2030 , 2017, IEEE Transactions on Applied Superconductivity.

[18]  M. Iwakuma,et al.  AC Loss Properties of Stacked REBCO Superconducting Tapes , 2017, IEEE Transactions on Applied Superconductivity.

[19]  Gustaaf,et al.  Nanocomposites Using Preformed ZrO 2 Nanocrystals : Growth Mechanisms and Vortex Pinning Properties , 2017 .

[20]  S. Ricart,et al.  Unique nanostructural features in Fe, Mn-doped YBCO thin films , 2016 .

[21]  S. Ricart,et al.  Superconducting YBa2Cu3O7–δ Nanocomposites Using Preformed ZrO2 Nanocrystals: Growth Mechanisms and Vortex Pinning Properties , 2016 .

[22]  S. Pennycook,et al.  Emerging Diluted Ferromagnetism in High‐T c Superconductors Driven by Point Defect Clusters , 2016, Advanced science.

[23]  S. Ricart,et al.  Epitaxial YBa2Cu3O7−x nanocomposite thin films from colloidal solutions , 2015 .

[24]  V. Selvamanickam,et al.  Requirements to achieve high in-field critical current density at 30 K in heavily-doped (Gd,Y)Ba2Cu3Ox superconductor tapes , 2015 .

[25]  L. Molina‐Luna,et al.  Solution-derived YBa2Cu3O7−δ (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles , 2015 .

[26]  V. Selvamanickam,et al.  Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd, Y)-Ba-Cu-O superconducting tapes , 2014 .

[27]  H. Suo,et al.  Size-controlled spontaneously segregated Ba2YTaO6 nanoparticles in YBa2Cu3O7 nanocomposites obtained by chemical solution deposition , 2014 .

[28]  Xavier Obradors,et al.  Coated conductors for power applications: materials challenges , 2014 .

[29]  G. M. Stocks,et al.  Self‐Assembly of Nanostructured, Complex, Multication Films via Spontaneous Phase Separation and Strain‐Driven Ordering , 2013 .

[30]  Venkat Selvamanickam,et al.  Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition , 2013 .

[31]  J. Willis,et al.  The effects of density and size of BaMO3 (M=Zr, Nb, Sn) nanoparticles on the vortex glassy and liquid phase in (Y,Gd)Ba2Cu3Oy coated conductors , 2013 .

[32]  T. Puig,et al.  Nanostrain induced pinning in YBa2Cu3O7−x nanocomposites even close to the irreversibility line , 2012 .

[33]  X. Granados,et al.  Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions , 2012 .

[34]  S. Ricart,et al.  Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles , 2012, Journal of Nanoparticle Research.

[35]  T. Puig,et al.  Structural defects in trifluoroacetate derived YBa2Cu3O7 thin films , 2012 .

[36]  G. Deutscher,et al.  Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. , 2012, Nature materials.

[37]  J. Arbiol,et al.  Solution-derived YBa2Cu3O7 nanocomposite films with a Ba2YTaO6 secondary phase for improved superconducting properties , 2012 .

[38]  A. Koshelev,et al.  Theory and simulations on strong pinning of vortex lines by nanoparticles , 2011, 1106.2477.

[39]  S. Pennycook,et al.  Strain-driven oxygen deficiency in self-assembled, nanostructured, composite oxide films. , 2011, ACS nano.

[40]  H. Suo,et al.  Preparation of solution-based YBCO films with BaSnO3 particles , 2011 .

[41]  M. Casanove,et al.  Chemical solution approaches to YBa2Cu3O7_delta-Au nanocomposite superconducting thin films. , 2011, Journal of nanoscience and nanotechnology.

[42]  T. Puig,et al.  Nanostructured Superconductors with Efficient Vortex Pinning , 2011 .

[43]  T. Kiss,et al.  In-field characterization of FeTe0.8S0.2 epitaxial thin films with enhanced superconducting properties , 2010 .

[44]  T. Puig,et al.  Evolution of Metal-Trifluoroacetate Precursors in the Thermal Decomposition toward High-Performance YBa2Cu3O7 Superconducting Films , 2010 .

[45]  David M. Buczek,et al.  Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation , 2009 .

[46]  T. Puig,et al.  Growth of Chemical Solution Deposited $^{\rm TFA}{\rm YBCO}/^{\rm MOD}({\rm Ce},{\rm Zr}){\rm O}_{2}/^{\rm ABAD}{\rm YSZ/SS}$ Coated Conductors , 2009, IEEE Transactions on Applied Superconductivity.

[47]  P. Dowden,et al.  Synergetic combination of different types of defect to optimize pinning landscape using BaZrO(3)-doped YBa(2)Cu(3)O(7). , 2009, Nature materials.

[48]  Y. Morilla,et al.  All chemical YBa_2Cu_3O_7 superconducting multilayers: Critical role of CeO_2 cap layer flatness , 2009 .

[49]  Wei Zhang,et al.  Progress in Nanoengineered Microstructures for Tunable High‐Current, High‐Temperature Superconducting Wires , 2008 .

[50]  Q. Jia,et al.  Materials science challenges for high-temperature superconducting wire. , 2007, Nature materials.

[51]  N. Mestres,et al.  Strong isotropic flux pinning in solution-derived YBa2Cu3O7-x nanocomposite superconductor films. , 2007, Nature materials.

[52]  L. Schultz,et al.  Enhanced flux pinning in YBa2Cu3O7 layers by the formation of nanosized BaHfO3 precipitates using the chemical deposition method , 2007 .

[53]  T. Puig,et al.  Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films , 2006 .

[54]  D. Christen,et al.  Critical currents of ex situ YBa2Cu3O7- δ thin films on rolling assisted biaxially textured substrates : Thickness, field, and temperature dependencies , 2006 .

[55]  Dominic F. Lee,et al.  High-Performance High-Tc Superconducting Wires , 2006, Science.

[56]  M. Sumption,et al.  Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor , 2004, Nature.

[57]  Q. X. Jia,et al.  Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7–x + BaZrO3 , 2004, Nature materials.

[58]  W. Paul,et al.  High temperature superconductors for power applications , 2004 .

[59]  D. Larbalestier,et al.  High-Tc superconducting materials for electric power applications , 2001, Nature.

[60]  N. Popa The (hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for all Laue Groups in Rietveld Refinement , 1998 .

[61]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[62]  Nelson,et al.  Boson localization and correlated pinning of superconducting vortex arrays. , 1993, Physical review. B, Condensed matter.

[63]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .