GNSS precise point positioning :the enhancement with GLONASS

Precise Point Positioning (PPP) provides GNSS navigation using a stand-alone receiver with no base station. As a technique PPP suffers from long convergence times and quality degradation during periods of poor satellite visibility or geometry. Many applications require reliable real time centimetre level positioning with worldwide coverage, and a short initialisation time. To achieve these goals, this thesis considers the use of GLONASS in conjunction with GPS in kinematic PPP. This increases the number of satellites visible to the receiver, improving the geometry of the visible satellite constellation. To assess the impact of using GLONASS with PPP, it was necessary to build a real time mode PPP program. pppncl was constructed using a combination of Fortran and Python to be capable of processing GNSS observations with precise satellite ephemeris data in the standardised RINEX and SP3 formats respectively. pppncl was validated in GPS mode using both static sites and kinematic datasets. In GPS only mode, one sigma accuracy of 6.4mm and 13mm in the horizontal and vertical respectively for 24 h static positioning was seen. Kinematic horizontal and vertical accuracies of 21mm and 33mm were demonstrated. pppncl was extended to assess the impact of using GLONASS observations in addition to GPS in static and kinematic PPP. Using ESA and Veripos Apex G2 satellite orbit and clock products, the average time until 10 cm 1D static accuracy was achieved, over a range of globally distributed sites, was seen to reduce by up to 47%. Kinematic positioning was tested for different modes of transport using real world datasets. GPS/GLONASS PPP reduced the convergence time to decimetre accuracy by up to a factor of three. Positioning was seen to be more robust in comparison to GPS only PPP, primarily due to cycle slips not being present on both satellite systems on the occasions when they occurred, and the reduced impact of undetected outliers.

[1]  M. Meindl,et al.  GNSS processing at CODE: status report , 2009 .

[2]  Yang Gao,et al.  Real-Time Kinematic OTF Positioning Using a Single GPS Receiver , 2009 .

[3]  Washington Y. Ochieng,et al.  GPS Integrity and Potential Impact on Aviation Safety , 2003, Journal of Navigation.

[4]  S. Newcomb Tables Of The Motion Of The Earth On Its Axis And Around The Sun , 2013 .

[5]  Douglas Thain,et al.  Distributed computing in practice: the Condor experience , 2005, Concurr. Pract. Exp..

[6]  Craig Roberts,et al.  Precise Point Positioning: Where are we now? , 2011 .

[7]  J. K. Ray,et al.  Use of Multiple Antennas to Mitigate Carrier Phase Multipath in Reference Stations , 1999 .

[8]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[9]  Paul Cross,et al.  A New Signal-to-Noise-Ratio Based Stochastic Model for GNSS High-Precision Carrier Phase Data Processing Algorithms in the Presence of Multipath Errors , 2006 .

[10]  Christian Rocken,et al.  Atmospheric water vapor and geoid measurements in the open ocean with GPS , 2005 .

[11]  Werner Gurtner,et al.  RINEX - The Receiver Independent Exchange Format - Version 3.00 , 2007 .

[12]  Iwona Stanislawska,et al.  Monitoring and Forecasting the Ionosphere Over Europe: The DIAS Project , 2006 .

[13]  Manuel Hernández-Pajares,et al.  A Review of Higher Order Ionospheric Refraction Effects on Dual Frequency GPS , 2011 .

[14]  Ahmed El-Mowafy,et al.  Local Statistical Testing in Quality Control of GNSS Observations , 2010 .

[15]  Boonsap Witchayangkoon,et al.  Elements of GPS precise point positioning , 2000 .

[16]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[17]  A. Booth Numerical Methods , 1957, Nature.

[18]  Eric Chatre,et al.  Evolution of the Global Navigation SatelliteSystem (GNSS) , 2008, Proceedings of the IEEE.

[19]  Paul Cross,et al.  Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling , 2007 .

[20]  Yang Gao,et al.  A NEW METHOD FOR CARRIER-PHASE–BASED PRECISE POINT POSITIONING , 2002 .

[21]  Christian Rocken,et al.  A New Real-Time Global GPS and GLONASS Precise Positioning Correction Service: Apex , 2011 .

[22]  A. Hesselbarth,et al.  Short-term Stability of GNSS Satellite Clocks and its Effects on Precise Point Positioning , 2008 .

[23]  A. Leick GPS satellite surveying , 1990 .

[24]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[25]  R. Ferland,et al.  The IGS-combined station coordinates, earth rotation parameters and apparent geocenter , 2009 .

[26]  Peter Steigenberger,et al.  Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis , 2011 .

[27]  Sunil B. Bisnath,et al.  Automated cycle-slip correction of dual-frequency kinematic GPS data , 2000 .

[28]  H. Schuh,et al.  Short Note: A global model of pressure and temperature for geodetic applications , 2007 .

[29]  Neil Ashby,et al.  Relativity in the Global Positioning System , 2003, Living reviews in relativity.

[30]  Peter Teunissen,et al.  Optimal Recursive Least-Squares Filtering of GPS Pseudorange Measurements , 2008 .

[31]  J. Klobuchar,et al.  Eye on the Ionosphere: The Correlation between Solar 10.7 cm Radio Flux and Ionospheric Range Delay , 2000, GPS Solutions.

[32]  M. Abdel-Salam,et al.  Precise point positioning using un-differenced code and carrier phase observations , 2005 .

[33]  V. V. Mitrikas,et al.  High-accurate GLONASS Orbit and Clock Determination for the Assessment of System Performance , 2006 .

[34]  Alan Dodson,et al.  Performance of Precise Point Positioning with Ambiguity Resolution for 1- to 4-Hour Observation Periods , 2010 .

[35]  L. Wanninger,et al.  Carrier phase multipath mitigation based on GNSS signal quality measurements , 2009 .

[36]  Michael S. Braasch,et al.  GPS receiver architectures and measurements , 1999, Proc. IEEE.

[37]  Xiaohong Zhang,et al.  Regional reference network augmented precise point positioning for instantaneous ambiguity resolution , 2011 .

[38]  Christian Rocken,et al.  Real-time Clock and Orbit Corrections for Improved Point Positioning via NTRIP , 2007 .

[39]  Pierre Héroux,et al.  Precise Point Positioning Using IGS Orbit and Clock Products , 2001, GPS Solutions.

[40]  H. Bock,et al.  High-rate GPS clock corrections from CODE: support of 1 Hz applications , 2009 .

[41]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[42]  Sunil Bisnath,et al.  Current State of Precise Point Positioning and Future Prospects and Limitations , 2009 .

[43]  W. I. Bertiger,et al.  Effects of antenna orientation on GPS carrier phase , 1992 .

[44]  Gerhard Beutler,et al.  Validating ocean tide loading models using GPS , 2005 .

[45]  H. S. Hopfield Two- quartic tropospheric refractivity profile for correcting satellite data , 1969 .

[46]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[47]  M. Vermeer,et al.  The precision of geodetic GPS and one way of improving it , 1997 .

[48]  Lambert Wanninger,et al.  Carrier Phase Multipath Calibration of GPS Reference Stations , 2000 .

[49]  D. Laurichesse,et al.  The CNES Real-time PPP with Undifferenced Integer Ambiguity Resolution Demonstrator , 2011 .

[50]  Agus Budiyono,et al.  Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems , 2012 .

[51]  Paul Collins,et al.  Products and Applications for Precise Point Positioning - Moving Towards Real-Time , 2004 .

[52]  Y. Bock,et al.  Global Positioning System Network analysis with phase ambiguity resolution applied to crustal deformation studies in California , 1989 .

[53]  Jim R. Ray,et al.  On the precision and accuracy of IGS orbits , 2009 .

[54]  Y. Bar-Sever,et al.  Estimating horizontal gradients of tropospheric path delay with a single GPS receiver , 1998 .

[55]  J. Kouba A GUIDE TO USING INTERNATIONAL GNSS SERVICE (IGS) PRODUCTS , 2003 .

[56]  Mary Shaw,et al.  Global variable considered harmful , 1973, SIGP.

[57]  R. B. Langley,et al.  P OSSIBLE WEIGHTING SCHEMES FOR GPS CARRIER PHASE OBSERVATIONS IN THE PRESENCE OF MULTIPATH , 1999 .

[58]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[59]  Sung H. Byun,et al.  A new type of troposphere zenith path delay product of the international GNSS service , 2009 .

[60]  Peter J. Clarke,et al.  Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations , 2011 .

[61]  A. Mozo,et al.  magicGNSS: Precise GNSS Products Out of the Box , 2008 .

[62]  Carey E. Noll,et al.  The IGS global data center at the CDDIS - an update , 2001 .

[63]  Kevin Dixon StarFire TM : A Global SBAS for Sub-Decimeter Precise Point Positioning , 2006 .

[64]  J. Saastamoinen,et al.  Contributions to the theory of atmospheric refraction , 1972 .

[65]  K. Radio,et al.  An Algebraic Solution of the GPS Equations , 1985 .

[66]  Claude Boucher,et al.  ITRS, PZ-90 and WGS 84: current realizations and the related transformation parameters , 2001 .

[67]  Boleslaw K. Szymanski,et al.  Expressing object-oriented concepts in Fortran 90 , 1997, FORF.

[68]  Yang Gao,et al.  Precise Point Positioning Using Combined GPS and GLONASS Observations , 2007 .

[69]  R. Piriz,et al.  Orbits and Clocks for GLONASS Precise-Point-Positioning , 2009 .

[70]  B Görres,et al.  Absolute calibration of GPS antennas: laboratory results and comparison with field and robot techniques , 2006 .

[71]  Peter J. Clarke,et al.  An Examination of Network RTK GPS Services in Great Britain , 2010 .

[72]  Lambert Wanninger,et al.  Carrier-phase inter-frequency biases of GLONASS receivers , 2012, Journal of Geodesy.

[73]  Luiz Danilo Damasceno Ferreira,et al.  GPS Satellites Orbits: Resonance , 2009 .

[74]  Michael B. Heflin,et al.  Orbit Determination with NASA's High Accuracy Real-Time Global Differential GPS System , 2001 .

[75]  G. Gendt,et al.  Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations , 2008 .

[76]  John M. Wahr,et al.  The forced nutations of an elliptical, rotating, elastic and oceanless earth , 1981 .

[77]  Gérard Lachapelle,et al.  GPS Observables and Error Sources for Kinematic Positioning , 1991 .

[78]  Richard B. Langley,et al.  Instantaneous Cycle‐Slip Correction for Real‐Time PPP Applications , 2010 .

[79]  Oscar L. Colombo,et al.  Evaluation of Precise, Kinematic GPS Point Positioning , 2004 .

[80]  M. Olynik,et al.  Modeling and estimation of C1–P1 bias in GPS receivers , 2001 .

[81]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[82]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[83]  J. L. Berné,et al.  PPP Technique Analysis Based on Time Convergence, Repeatability, IGS Products, Different Software Processing, and GPS+GLONASS Constellation , 2011 .

[84]  M. P. Levin,et al.  Numerical Recipes In Fortran 90: The Art Of Parallel Scientific Computing , 1998, IEEE Concurrency.

[85]  Rolf DachRalf,et al.  Improved antenna phase center models for GLONASS , 2011 .

[86]  Carey E. Noll,et al.  The crustal dynamics data information system: A resource to support scientific analysis using space geodesy , 2010 .

[87]  E.N. Arroyo-Suarez,et al.  Evaluating a global differential GPS system for hydrographic surveying , 2005, Proceedings of OCEANS 2005 MTS/IEEE.

[88]  B. R. Townsend,et al.  Comparison of Different Proposals for Reference Station Network Information Distribution Formats , 2002 .

[89]  Jan Kouba,et al.  A simplified yaw-attitude model for eclipsing GPS satellites , 2009 .

[90]  J.-P. Berthias,et al.  Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination , 2007 .

[91]  Geoffrey Blewitt,et al.  An Automatic Editing Algorithm for GPS data , 1990 .

[92]  R. Langley,et al.  Tropospheric Zenith Delay Prediction Accuracy for Airborne GPS High-Precision Positioning , 1998 .

[93]  R. Bucy,et al.  Filtering for stochastic processes with applications to guidance , 1968 .

[94]  Landon Urquhart,et al.  Atmospheric Pressure Loading and its Effects on Precise Point Positioning , 2009 .

[95]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[96]  Yoaz E. Bar-Sever,et al.  A new model for GPS yaw attitude , 1996 .

[97]  M. Schenewerk A brief review of basic GPS orbit interpolation strategies , 2003 .

[98]  Alison K. Brown,et al.  Integrated GPS/GLONASS for Reliable Receiver Autonomous Integrity Monitoring (RAIM) , 1990 .

[99]  Yang Gao,et al.  Airborne kinematic positioning using precise point positioning methodology , 2005 .

[100]  Maorong Ge,et al.  Rapid re-convergences to ambiguity-fixed solutions in precise point positioning , 2010 .

[101]  F. N. Teferle,et al.  Integer ambiguity resolution in precise point positioning: method comparison , 2010 .

[102]  Peter J. Clarke,et al.  GPS sidereal filtering: coordinate- and carrier-phase-level strategies , 2007 .

[103]  Paul Collins,et al.  Isolating and Estimating Undifferenced GPS Integer Ambiguities , 2008 .

[104]  Yuki Hatanaka A Compression Format and Tools for GNSS Observation Data , 2008 .

[105]  Y. Bar-Sever,et al.  Demonstration of decimeter-level real-time positioning of an airborne platform , 2003 .

[106]  R. Nerem,et al.  GPS Carrier phase Ambiguity Resolution Using Satellite-Satellite Single Differences , 1999 .

[107]  C. Hide,et al.  Carrier phase-based integrity monitoring for high-accuracy positioning , 2009 .

[108]  Bernhard Hofmann-Wellenhof,et al.  GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more , 2007 .

[109]  Terry Moore,et al.  What is the accuracy of DGPS? , 2005, Journal of Navigation.

[110]  Lambert Wanninger,et al.  GLONASS Inter-frequency Biases and Their Effects on RTK and PPP Carrier-phase Ambiguity Resolution , 2011 .

[111]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[112]  Florian Dilssner,et al.  The GLONASS-M satellite yaw-attitude model , 2011 .

[113]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[114]  Gerard Petit,et al.  IERS Conventions (2003) , 2004 .

[115]  Richard Barker,et al.  The Impact of High Performance GPS on the Offshore Marine Survey, Navigation and Positioning Industry , 2002 .

[116]  Charles M. Meertens,et al.  TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data , 1999, GPS Solutions.

[117]  Gang Chen,et al.  GPS kinematic positioning for the airborne laser altimetry at Long Valley, California , 1998 .

[118]  R. Lowry,et al.  Concepts and Applications of Inferential Statistics , 2014 .

[119]  Leonid Petrov,et al.  Study of the atmospheric pressure loading signal in very long baseline interferometry observations , 2003, physics/0311096.

[120]  Umar Iqbal Bhatti,et al.  Improved integrity algorithms for the integrated GPS/INS systems in the presence of slowly growing errors , 2007 .

[121]  Richard B. Langley,et al.  Analyzing GNSS data in precise point positioning software , 2011 .

[122]  Ahmed El-Rabbany,et al.  Assessment of Several Interpolation Methods for Precise GPS Orbit , 2007, Journal of Navigation.

[123]  Ahmed El-Mowafy Precise Point Positioning in the Airborne Mode , 2011 .

[124]  Charles Wang,et al.  Assessment of Commercial Network RTK User Positioning Performance over Long Inter-Station Distances , 2010 .

[125]  Michael Metcalf,et al.  Fortran 90/95 explained , 1996 .

[126]  D. Dodd Utility of Ionosphere and Troposphere Models for Extending the Range of High-Accuracy GPS , 2007 .

[127]  Greg Welch,et al.  Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960 , 1994 .

[128]  Bill Russell-Cargill Vessel based solutions for the acquisition of geotechnical data in subsea site investigations , 2010 .

[129]  P.J.G. Teunissen Quality control in integrated navigation systems , 1990, IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences.

[130]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[131]  G. Blewitt Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km , 1989 .