Euler's Limit -- Revisited
暂无分享,去创建一个
The aim of this short note is that if $\{ a_{n}\}$ and $\{ b_{n}\}$ are two sequences of positive real numbers such that $a_{n}\to +\infty$ and $b_n$ satisfying the asymptotic formula $b_n\sim k\cdot a_{n}$, where $k>0$, then $\lim\limits_{n\to\infty}\left(1+\frac{1}{a_{n}}\right)^{b_{n}}= e^{k}$.