Water detection through spatio-temporal invariant descriptors

We introduce a video pre-processing step to remove background reflections and inherent water colours.We introduce a hybrid spatial and temporal descriptor for local water classification.We introduce a new dataset, the Video Water Database, for experimental evaluation and to encourage research into water detection.We show experimentally that our water detection method improves over methods from dynamic texture and material recognition. In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, however, is less discussed compared to general texture recognition. Here, we analyze several motion properties of water. First, we describe a video pre-processing step, to increase invariance against water reflections and water colours. Second, we investigate the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors are used to locally classify the presence of water and a binary water detection mask is generated through spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. Experimental evaluation on the Video Water Database and the DynTex database indicates the effectiveness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and material recognition.

[1]  Remco C. Veltkamp,et al.  A bottom-up approach to class-dependent feature selection for material classification , 2014, 2014 International Conference on Computer Vision Theory and Applications (VISAPP).

[2]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Volume Local Binary Patterns , 2006, WDV.

[3]  Payam Saisan,et al.  Dynamic texture recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[4]  R. Schwind,et al.  Polarization vision in water insects and insects living on a moist substrate , 1991, Journal of Comparative Physiology A.

[5]  M. K. Teal,et al.  The statistical characterization of the sea for the segmentation of maritime images , 2003, Proceedings EC-VIP-MC 2003. 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications (IEEE Cat. No.03EX667).

[6]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[7]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[9]  Nuno Vasconcelos,et al.  Modeling, Clustering, and Segmenting Video with Mixtures of Dynamic Textures , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Antoni B. Chan,et al.  Clustering dynamic textures with the hierarchical EM algorithm , 2013, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Peter J. Giblin,et al.  Local Image Features Resulting from 3-Dimensional Geometric Features, Illumination, and Movement: I , 2009, International Journal of Computer Vision.

[12]  G. Horváth,et al.  Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. , 1998, The Journal of experimental biology.

[13]  René Vidal,et al.  A Unified Approach to Segmentation and Categorization of Dynamic Textures , 2010, ACCV.

[14]  Xiaofeng Ren,et al.  Toward Robust Material Recognition for Everyday Objects , 2011, BMVC.

[15]  ZissermanAndrew,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009 .

[16]  Dmitry Chetverikov,et al.  Analysis and performance evaluation of optical flow features for dynamic texture recognition , 2007, Signal Process. Image Commun..

[17]  René Vidal,et al.  Optical flow estimation & segmentation of multiple moving dynamic textures , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Mark J. Huiskes,et al.  DynTex: A comprehensive database of dynamic textures , 2010, Pattern Recognit. Lett..

[19]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[20]  Randal C. Nelson,et al.  Qualitative recognition of motion using temporal texture , 1992, CVGIP Image Underst..

[21]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[22]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[24]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Antonio Criminisi,et al.  Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning , 2012, Found. Trends Comput. Graph. Vis..

[26]  Dmitry Chetverikov,et al.  Dynamic Texture Detection Based on Motion Analysis , 2009, International Journal of Computer Vision.

[27]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Edward H. Adelson,et al.  Recognizing Materials Using Perceptually Inspired Features , 2013, International Journal of Computer Vision.

[29]  Remco C. Veltkamp,et al.  On the segmentation and classification of water in videos , 2015, 2014 International Conference on Computer Vision Theory and Applications (VISAPP).

[30]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[31]  Sebastian Scherer,et al.  River mapping from a flying robot: state estimation, river detection, and obstacle mapping , 2012, Auton. Robots.

[32]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[33]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2005, International Journal of Computer Vision.

[34]  Pascal Mettes,et al.  Nature Conservation Drones for Automatic Localization and Counting of Animals , 2014, ECCV Workshops.

[35]  Matti Pietikäinen,et al.  Automatic Dynamic Texture Segmentation Using Local Descriptors and Optical Flow , 2013, IEEE Transactions on Image Processing.

[36]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Shane Brennan,et al.  Evaluating the performance of unmanned ground vehicle water detection , 2010, PerMIS.

[38]  Cor J. Veenman,et al.  Episode-Constrained Cross-Validation in Video Concept Retrieval , 2009, IEEE Transactions on Multimedia.

[39]  Theo Gevers,et al.  Per-patch Descriptor Selection Using Surface and Scene Properties , 2012, ECCV.

[40]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[42]  W. Grossman,et al.  Autonomous Searching and Tracking of a River using an UAV , 2007, 2007 American Control Conference.

[43]  Matti Pietikäinen,et al.  Dynamic texture and scene classification by transferring deep image features , 2015, Neurocomputing.

[44]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[45]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[46]  Fabrice Meriaudeau,et al.  A SURVEY ON OUTDOOR WATER HAZARD DETECTION , 2009 .

[47]  Xueming Qian,et al.  PLBP: An effective local binary patterns texture descriptor with pyramid representation , 2011, Pattern Recognit..

[48]  René Vidal,et al.  Categorizing Dynamic Textures Using a Bag of Dynamical Systems , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.