Fuzzy modeling of manufacturing and logistic systems

[1]  Huibert Kwakernaak,et al.  Rating and ranking of multiple-aspect alternatives using fuzzy sets , 1976, Autom..

[2]  H. Zimmermann,et al.  Latent connectives in human decision making , 1980 .

[3]  Ronald R. Yager A Foundation for a Theory of Possibility , 1980, Cybern. Syst..

[4]  Ronald R. Yager,et al.  A procedure for ordering fuzzy subsets of the unit interval , 1981, Inf. Sci..

[5]  Didier Dubois,et al.  Ranking fuzzy numbers in the setting of possibility theory , 1983, Inf. Sci..

[6]  G. Bortolan,et al.  A review of some methods for ranking fuzzy subsets , 1985 .

[7]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[8]  Caroline M. Eastman,et al.  Review: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[9]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[10]  E.Stanley Lee,et al.  Fuzzy job sequencing for a flow shop , 1992 .

[11]  Heinrich Rommelfanger,et al.  Fuzzy Decision Support-Systeme , 1994 .

[12]  Moti Schneider,et al.  On the use of interval mathematics in fuzzy expert systems , 1994, Int. J. Intell. Syst..

[13]  Hao Ying,et al.  Essentials of fuzzy modeling and control , 1995 .

[14]  S. Chanas,et al.  Multiobjective programming in optimization of interval objective functions -- A generalized approach , 1996 .

[15]  H. Ishibuchi,et al.  Formulation of fuzzy flowshop scheduling problems with fuzzy processing time , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[16]  Wolfgang Slany,et al.  Scheduling as a fuzzy multiple criteria optimization problem , 1996, Fuzzy Sets Syst..

[17]  Edwin H.-M. Sha,et al.  Imprecise task schedule optimization , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[18]  Philippe Fortemps,et al.  Jobshop scheduling with imprecise durations: a fuzzy approach , 1997, IEEE Trans. Fuzzy Syst..

[19]  Stanislaw Heilpern,et al.  Representation and application of fuzzy numbers , 1997, Fuzzy Sets Syst..

[20]  Z. Kulpa DIAGRAMMATIC REPRESENTATION FOR A SPACE OF INTERVALS , 1997 .

[21]  Marin Litoiu,et al.  Real time task scheduling allowing fuzzy due dates , 1997, Eur. J. Oper. Res..

[22]  G. Facchinetti,et al.  Note on ranking fuzzy triangular numbers , 1998 .

[23]  Dimitar Filev,et al.  On ranking fuzzy numbers using valuations , 1999, Int. J. Intell. Syst..

[24]  Ronald R. Yager,et al.  Ranking Fuzzy Numbers Using a-Weighted Valuations , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[25]  Josep M. Mirats Tur,et al.  Fuzzy Inductive Reasoning Model-Based Fault Detection Applied to a Commercial Aircraft , 2000, Simul..

[26]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[27]  Marin Litoiu,et al.  Fuzzy scheduling with application to real-time systems , 2001, Fuzzy Sets Syst..

[28]  Ronald R. Yager,et al.  A context-dependent method for ordering fuzzy numbers using probabilities , 2001, Inf. Sci..

[29]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[30]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[31]  Reay-Chen Wang,et al.  Aggregate production planning with multiple objectives in a fuzzy environment , 2001, Eur. J. Oper. Res..

[32]  Robert de Souza,et al.  Fuzzy rule learning during simulation of manufacturing resources , 2001, Fuzzy Sets Syst..

[33]  Pavel V. Sevastjanov,et al.  A Constructive Numerical Method for the Comparison of Intervals , 2001, PPAM.

[34]  Ichiro Nishizaki,et al.  Fuzzy programming and profit and cost allocation for a production and transportation problem , 2001, Eur. J. Oper. Res..

[35]  K. Karczewski,et al.  A probabilistic method for ordering group of intervals , 2002 .