Verification of internal risk measure estimates

Abstract This paper concerns sequential computation of risk measures for financial data and asks how, given a risk measurement procedure, we can tell whether the answers it produces are ‘correct’. We draw the distinction between ‘external’ and ‘internal’ risk measures and concentrate on the latter, where we observe data in real time, make predictions and observe outcomes. It is argued that evaluation of such procedures is best addressed from the point of view of probability forecasting or Dawid’s theory of ‘prequential statistics’ [12]. We introduce a concept of ‘calibration’ of a risk measure in a dynamic setting, following the precepts of Dawid’s weak and strong prequential principles, and examine its application to quantile forecasting (VaR – value at risk) and to mean estimation (applicable to CVaR – expected shortfall). The relationship between these ideas and ‘elicitability’ [24] is examined. We show in particular that VaR has special properties not shared by any other risk measure. Turning to CVaR we argue that its main deficiency is the unquantifiable tail dependence of estimators. In a final section we show that a simple data-driven feedback algorithm can produce VaR estimates on financial data that easily pass both the consistency test and a further newly-introduced statistical test for independence of a binary sequence.

[1]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[2]  Simone Manganelli,et al.  CAViaR , 2004 .

[3]  Stefan Reichelstein,et al.  Information-eliciting compensation schemes , 1985 .

[4]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[5]  Romain Deguest,et al.  Robustness and sensitivity analysis of risk measurement procedures , 2008 .

[6]  Yoav Shoham,et al.  Eliciting properties of probability distributions , 2008, EC '08.

[7]  G. Gripenberg,et al.  On the prediction of fractional Brownian motion , 1996, Journal of Applied Probability.

[8]  Hajo Holzmann,et al.  The role of the information set for forecasting—with applications to risk management , 2014, 1404.7653.

[9]  Howard M. Taylor,et al.  On the Distribution of Stock Price Differences , 1967, Oper. Res..

[10]  Robin Sibson,et al.  Present Position and Potential Developments: Some Personal Views Multivariate Analysis , 1984 .

[11]  Gary James Jason,et al.  The Logic of Scientific Discovery , 1988 .

[12]  R. Gomory,et al.  Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Selecta Volume E , 1997 .

[13]  P. Embrechts,et al.  Statistics and Quantitative Risk Management for Banking and Insurance , 2014 .

[14]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[15]  T. Andersen THE ECONOMETRICS OF FINANCIAL MARKETS , 1998, Econometric Theory.

[16]  M A H Dempster,et al.  An automated FX trading system using adaptive reinforcement learning , 2006, Expert Syst. Appl..

[17]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[18]  A. Dawid,et al.  Prequential probability: principles and properties , 1999 .

[19]  James S. Kennedy,et al.  EVALUATING PROBABILITY FORECASTS. , 1969 .

[20]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[21]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[22]  Steven Kou,et al.  External Risk Measures and Basel Accords , 2013, Math. Oper. Res..

[23]  Thomas T. Warner,et al.  Numerical Weather and Climate Prediction , 2011 .

[24]  James Mitchell,et al.  Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness , 2011 .

[25]  Johanna F. Ziegel,et al.  COHERENCE AND ELICITABILITY , 2013, 1303.1690.

[26]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[27]  Peter F. CHRISTOFFERSENti EVALUATING INTERVAL FORECASTS , 2016 .

[28]  Subhabrata Chakraborti,et al.  Nonparametric Statistical Inference , 2011, International Encyclopedia of Statistical Science.

[29]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[30]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[31]  A. Haldane,et al.  The dog and the frisbee , 2012 .

[32]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[33]  B. Mandelbrot Fractals and Scaling In Finance: Discontinuity, Concentration, Risk , 2010 .

[34]  Siyu Zhang,et al.  Elicitation and Identification of Properties , 2014, COLT.

[35]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[36]  Michael Curran Backtesting Expected Shortfall , 2014 .

[37]  J. Landes,et al.  Strictly Proper Scoring Rules , 2014 .

[38]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[39]  Rama Cont,et al.  Robustness and sensitivity analysis of risk measurement procedures , 2010 .

[40]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[41]  Marc S. Paolella,et al.  Value-at-Risk Prediction: A Comparison of Alternative Strategies , 2005 .

[42]  L. J. Savage Elicitation of Personal Probabilities and Expectations , 1971 .

[43]  B. Rémillard,et al.  Relating quantiles and expectiles under weighted-symmetry , 1995 .

[44]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[45]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[46]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[47]  Johanna F. Ziegel,et al.  Higher order elicitability and Osband’s principle , 2015, 1503.08123.

[48]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .