Data-based fault detection and isolation using feedback control: Output feedback and optimality

This work focuses on data-based fault detection and isolation (FDI) of nonlinear process systems. Working within the framework of controller-enhanced FDI that we recently introduced, we address and solve two unresolved, practical problems. First, we consider the case where only output measurements are available and design appropriate state estimator-based output feedback controllers to achieve controller-enhanced FDI in the closed-loop system. Precise conditions for achieving FDI using output feedback control are provided. Second, we address the problem of controller-enhanced FDI in an optimal fashion within the framework of model predictive control (MPC). We propose an MPC formulation that includes appropriate isolability constraints to achieve FDI in the closed-loop system. Throughout the manuscript, we use a nonlinear chemical process example to demonstrate the applicability and effectiveness of the proposed methods.

[1]  W. A. Wallis,et al.  Techniques of Statistical Analysis. , 1950 .

[2]  A. Negiz,et al.  Statistical monitoring of multivariable dynamic processes with state-space models , 1997 .

[3]  Hassan Hammouri,et al.  Failure diagnosis and nonlinear observer. Application to a hydraulic process , 2002, J. Frankl. Inst..

[4]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[5]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[6]  Hassan Hammouri,et al.  A geometric approach to fault detection and isolation for bilinear systems , 2001, IEEE Trans. Autom. Control..

[7]  Panagiotis D. Christofides,et al.  Fault Detection and Isolation for Nonlinear Process Systems Using Asynchronous Measurements , 2008 .

[8]  Panagiotis D. Christofides,et al.  Fault‐tolerant control of nonlinear process systems subject to sensor faults , 2007 .

[9]  N. El‐Farra,et al.  Robust predictive control of switched systems: Satisfying uncertain schedules subject to state and control constraints , 2008 .

[10]  Nola D. Tracy,et al.  Multivariate Control Charts for Individual Observations , 1992 .

[11]  Nael H. El-Farra,et al.  Actuator fault isolation and reconfiguration in transport‐reaction processes , 2007 .

[12]  Prodromos Daoutidis,et al.  Synthesis of feedforward/state feedback controllers for nonlinear processes , 1989 .

[13]  Nael H. El-Farra Integrated Fault Detection and Fault-Tolerant Control Architectures for Distributed Processes , 2006 .

[14]  Ali Cinar,et al.  Statistical process monitoring and disturbance diagnosis in multivariable continuous processes , 1996 .

[15]  Panagiotis D. Christofides,et al.  Isolation and handling of actuator faults in nonlinear systems , 2008, at - Automatisierungstechnik.

[16]  A. Isidori,et al.  On the observability codistributions of a nonlinear system , 2000 .

[17]  Weihua Li,et al.  Isolation enhanced principal component analysis , 1999 .

[18]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part I: Quantitative model-based methods , 2003, Comput. Chem. Eng..

[19]  Nael H. El-Farra,et al.  Robust diagnosis and fault‐tolerant control of distributed processes over communication networks , 2009 .

[20]  James F. Davis,et al.  Fault-Tolerant Control of Nonlinear Systems Subject to Sensor Data Losses , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[21]  Panagiotis D. Christofides,et al.  Plantwide Fault Isolation Using Nonlinear Feedback Control , 2008 .

[22]  Alberto Isidori,et al.  A geometric approach to nonlinear fault detection and isolation , 2000, IEEE Trans. Autom. Control..

[23]  Barry M. Wise,et al.  The process chemometrics approach to process monitoring and fault detection , 1995 .

[24]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[25]  J. Macgregor,et al.  Analysis of multiblock and hierarchical PCA and PLS models , 1998 .

[26]  Panagiotis D. Christofides,et al.  Enhancing Data-based Fault Isolation Through Nonlinear Control , 2008 .

[27]  Theodora Kourti,et al.  Multivariate SPC Methods for Process and Product Monitoring , 1996 .

[28]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[29]  Bhavik R. Bakshi,et al.  Multiscale SPC using wavelets: Theoretical analysis and properties , 2003 .

[30]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part III: Process history based methods , 2003, Comput. Chem. Eng..

[31]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[32]  Panagiotis D. Christofides,et al.  Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control , 2005, Proceedings of the 2005, American Control Conference, 2005..

[33]  Panagiotis D. Christofides,et al.  Predictive control of switched nonlinear systems with scheduled mode transitions , 2005, IEEE Transactions on Automatic Control.

[34]  Panagiotis D. Christofides,et al.  Smart plant operations: Vision, progress and challenges , 2007 .

[35]  I. Nimmo,et al.  Adequately address abnormal operations , 1995 .

[36]  Hong Wang,et al.  Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[37]  Panagiotis D. Christofides,et al.  Lyapunov-Based Model Predictive Control of Nonlinear Systems Subject to Data Losses , 2007, IEEE Transactions on Automatic Control.

[38]  H. Hotelling,et al.  Multivariate Quality Control , 1947 .

[39]  Seongkyu Yoon,et al.  Fault diagnosis with multivariate statistical models part I: using steady state fault signatures , 2001 .

[40]  B. Bakshi Multiscale PCA with application to multivariate statistical process monitoring , 1998 .

[41]  Panagiotis D. Christofides,et al.  Fault‐tolerant control of nonlinear processes: performance‐based reconfiguration and robustness , 2006 .

[42]  Ahmet Palazoglu,et al.  Introduction to Process Control , 2005 .