Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy

[1]  H. Liu,et al.  Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity , 2020 .

[2]  C. Tasan,et al.  Hydrogenation-induced lattice expansion and its effects on hydrogen diffusion and damage in Ti–6Al–4V , 2020 .

[3]  Shaopeng Liu,et al.  Effect of Hydrogen Precharging on Mechanical and Electrochemical Properties of Pure Titanium , 2020, Advanced Engineering Materials.

[4]  Guanglong Xu,et al.  Improved fracture toughness by microalloying of Fe in Ti-6Al-4V , 2020, Materials & Design.

[5]  S. S. Shishvan,et al.  Hydrogen induced fast-fracture , 2020, Journal of the Mechanics and Physics of Solids.

[6]  Daokui Xu,et al.  Corrosion and Tensile Behaviors of Ti-4Al-2V-1Mo-1Fe and Ti-6Al-4V Titanium Alloys , 2019, Metals.

[7]  Daokui Xu,et al.  Deformation and fracture mechanisms of an annealing-tailored “bimodal” grain-structured Mg alloy , 2019, Journal of Materials Science & Technology.

[8]  K. Alaneme,et al.  Corrosion behaviour of low-cost Ti–4.5Al–xV–yFe alloys in sodium chloride and sulphuric acid solutions , 2019, Corrosion Engineering, Science and Technology.

[9]  M. Qi,et al.  Influence of thermal treatment on element partitioning in α+β titanium alloy , 2019, Journal of Alloys and Compounds.

[10]  郭艳华,et al.  等通道角挤压制备超细晶纯 Ti 的腐蚀性能研究 , 2019 .

[11]  Zhonggang Sun,et al.  The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy , 2019, Journal of Alloys and Compounds.

[12]  E. Han,et al.  Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy , 2019, International Journal of Fatigue.

[13]  C. Tasan,et al.  Microstructural and micro-mechanical characterization during hydrogen charging: An in situ scanning electron microscopy study , 2019, International Journal of Hydrogen Energy.

[14]  Sensen Huang,et al.  α + β 两相钛合金元素再分配行为及其对显微组织和力学性能的影响 , 2019 .

[15]  J. Yeom,et al.  Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network , 2019, Journal of Materials Science & Technology.

[16]  Yingang Liu,et al.  Structure response characteristics and surface nanocrystallization mechanism of alpha phase in Ti-6Al-4V subjected to high energy shot peening , 2019, Journal of Alloys and Compounds.

[17]  Ruirun Chen,et al.  Effect of phase formation on hydrogen storage properties in Ti-V-Mn alloys by zirconium substitution , 2019, Energy.

[18]  Yiming Jiang,et al.  Effect of Hydrogen Charging Conditions on Hydrogen Blisters and Pitting Susceptibility of 445J1M Ferritic Stainless Steel , 2018 .

[19]  Hua-Bing Li,et al.  Cavitation Erosion Behaviors of a Nickel-Free High-Nitrogen Stainless Steel , 2018, Tribology Letters.

[20]  Xin Lin,et al.  Electrochemical behaviour of laser solid formed Ti–6Al–4V alloy in a highly concentrated NaCl solution , 2018, Corrosion Science.

[21]  Xiaogang Li,et al.  Surface characterization of the commercially pure titanium after hydrogen charging and its electrochemical characteristics in artificial seawater , 2018, Journal of Electroanalytical Chemistry.

[22]  M. Bodunrin,et al.  Corrosion behaviour of Ti‐Al‐xV‐yFe experimental alloys in 3.5 wt% NaCl and 3.5 M H2SO4 , 2018 .

[23]  A. Koptyug,et al.  Hydrogen-Induced Phase Transformation and Microstructure Evolution for Ti-6Al-4V Parts Produced by Electron Beam Melting , 2018 .

[24]  E. Han,et al.  Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review , 2019 .

[25]  X. Cheng,et al.  Atmospheric Corrosion Behavior and Mechanism of a Ni-Advanced Weathering Steel in Simulated Tropical Marine Environment , 2017, Journal of Materials Engineering and Performance.

[26]  H. Kokawa,et al.  Friction-stir welding and processing of Ti-6Al-4V titanium alloy: A review , 2017 .

[27]  Hua-Bing Li,et al.  Passivity and Semiconducting Behavior of a High Nitrogen Stainless Steel in Acidic NaCl Solution , 2016 .

[28]  Lai‐Chang Zhang,et al.  Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes , 2016 .

[29]  Xin Lin,et al.  Solidification Microstructure of Laser Additive Manufactured Ti6Al2Zr2Sn3Mo1.5Cr2Nb Titanium Alloy , 2016 .

[30]  Z. Wang,et al.  Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid , 2016 .

[31]  Qimeng Chen,et al.  Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution , 2016 .

[32]  V. S. Raja,et al.  Effect of long term exposure and hydrogen effects on HSSCC behaviour of titanium alloy IMI 834 , 2015 .

[33]  Jun Lu,et al.  An experimental study of the (Ti-6Al-4V)-xH phase diagram using in situ synchrotron XRD and TGA/DSC techniques , 2015 .

[34]  H. Hu,et al.  The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid , 2014 .

[35]  Miaoquan Li,et al.  Lattice variations of Ti-6Al-4V alloy with hydrogen content , 2011 .

[36]  Lin Wang,et al.  Fabrication of Bioactive Titanium with Controlled Porous Structure and Cell Culture in Vitro , 2010 .

[37]  V. Raman,et al.  Evaluation of corrosion behavior of surface modified Ti–6Al–4V ELI alloy in hanks solution , 2010 .

[38]  Miaoquan Li,et al.  Effect of 0.770 wt%H addition on the microstructure of Ti–6Al–4V alloy and mechanism of δ hydride formation , 2009 .

[39]  W. Ke,et al.  Electrochemical behaviour of high nitrogen stainless steel in acidic solutions , 2009 .

[40]  R. Nishimura,et al.  Hydrogen-induced cracking of pure titanium in sulphuric acid and hydrochloric acid solutions using constant load method , 2008 .

[41]  Chia-Chieh Shen,et al.  Pressure–composition isotherms and reversible hydrogen-induced phase transformations in Ti–6Al–4V , 2007 .

[42]  D. Caillard,et al.  A fast method for determining favourable orientation relationships and interface planes: Application to titanium-titanium hydrides transformations , 2007 .

[43]  Jingjie Guo,et al.  Formation of titanium hydride in Ti–6Al–4V alloy , 2006 .

[44]  V. Raman,et al.  Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy , 2006 .

[45]  D. Shoesmith,et al.  Hydrogen absorption into alpha titanium in acidic solutions , 2006 .

[46]  D. Eliezer,et al.  Hydrogen absorption and desorption in a duplex-annealed Ti-6Al-4V alloy during exposure to different hydrogen-containing environments , 2006 .

[47]  G. Venkatachari,et al.  Influence of halide ions on the adsorption of diphenylamine on iron in 0.5 M H2SO4 solutions , 2006 .

[48]  D. Eliezer,et al.  Hydrogen trapping in β-21S titanium alloy , 2006 .

[49]  Isolda Costa,et al.  Corrosion characterization of titanium alloys by electrochemical techniques , 2006 .

[50]  D. Eliezer,et al.  High fugacity hydrogen effects at room temperature in titanium based alloys , 2005 .

[51]  D. Eliezer,et al.  The hydrogen embrittlement of titanium-based alloys , 2005 .

[52]  Raghuvir Singh,et al.  Influence of laser surface modification on corrosion behavior of stainless steel 316L and Ti–6Al–4V in simulated biofluid , 2005 .

[53]  A. Chmielewski,et al.  Excimer laser surface alloying of titanium with nickel and palladium for increased corrosion resistance , 2005 .

[54]  A. El-Amoush,et al.  The effect of hydrogen charging on the mechanical behaviour of α-brass , 2005 .

[55]  D. Shoesmith,et al.  Modeling the hydrogen-induced cracking of titanium alloys in nuclear waste repository environments , 2004 .

[56]  M. Metikoš-huković,et al.  EIS study of solid-state transformations in the passivation process of bismuth in sulfide solution , 2004 .

[57]  P. Marcus,et al.  Corrosion mechanisms of steel concrete moulds in contact with a demoulding agent studied by EIS and XPS , 2003 .

[58]  A. Lasia,et al.  Experimental study and modeling of impedance of the her on porous Ni electrodes , 2001 .

[59]  Jingli Luo,et al.  The hydrogen-enhanced effects of chloride ions on the passivity of type 304 stainless steel , 2000 .

[60]  F. D. Manchester,et al.  Phase diagrams of binary hydrogen alloys , 2000 .

[61]  B. G. Pound Hydrogen trapping in aged β-titanium alloys , 1997 .

[62]  J. Howe,et al.  Lengthening kinetics of $$(01\bar 10)$$ γ-TiH precipitates in α-Ti in the temperature range of 25 °c to 80 °c , 1995 .

[63]  B. G. Pound The effect of aging on hydrogen trapping in ß-titanium alloys , 1994 .

[64]  J. Scully,et al.  Effects of hydrogen on the mechanical properties of a TiMoNbAl alloy , 1993 .

[65]  David E. Williams,et al.  A sims investigation of hydrogen penetration of titanium electrodes , 1989 .

[66]  H. Birnbaum,et al.  Hydrogen embrittlement of α titanium: In situ tem studies , 1988 .

[67]  H. Numakura,et al.  Hydride precipitation in titanium , 1984 .

[68]  R. Gibala,et al.  Hydrogen embrittlement and stress corrosion cracking , 1985 .

[69]  H. Nelson Environmental hydrogen embrittlement of an α-β titanium alloy: Effect of hydrogen pressure , 1973 .

[70]  H. Nelson,et al.  Gaseous hydrogen-induced cracking of Ti-5Al-2.5Sn , 1972 .

[71]  J. E. Stein,et al.  Environmental hydrogen embrittlement of an α-β titanium alloy: Effect of microstructure , 1972 .