Ultrafast Sample placement on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic

[1]  Matija Snuderl,et al.  Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City region , 2020, Genome research.

[2]  C. Simon,et al.  An Evolving View of Phylogenetic Support. , 2020, Systematic biology.

[3]  Trevor Bedford,et al.  Cryptic transmission of SARS-CoV-2 in Washington state , 2020, Science.

[4]  Yunfan Fan,et al.  Genomic Diversity of SARS-CoV-2 During Early Introduction into the United States National Capital Region , 2020, medRxiv.

[5]  Benoit Morel,et al.  Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult , 2020, bioRxiv.

[6]  Dan Otelea,et al.  Molecular Epidemiology Analysis of SARS-CoV-2 Strains Circulating in Romania during the First Months of the Pandemic , 2020, Life.

[7]  M. Venkataswamy,et al.  Genomic epidemiology reveals multiple introductions and spread of SARS-CoV-2 in the Indian state of Karnataka , 2020, medRxiv.

[8]  Mikhail Prokopenko,et al.  Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling , 2020, Nature Medicine.

[9]  David Robertson,et al.  CoV-GLUE: A Web Application for Tracking SARS-CoV-2 Genomic Variation , 2020 .

[10]  Jason D. Fernandes,et al.  Stability of SARS-CoV-2 phylogenies , 2020, bioRxiv.

[11]  Trevor Bedford,et al.  Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California , 2020, Science.

[12]  Guy Baele,et al.  A Phylodynamic Workflow to Rapidly Gain Insights into the Dispersal History and Dynamics of SARS-CoV-2 Lineages , 2020, bioRxiv.

[13]  David Haussler,et al.  The UCSC SARS-CoV-2 Genome Browser , 2020, Nature Genetics.

[14]  Isaac I. Bogoch,et al.  Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States , 2020, Cell.

[15]  Etienne Simon-Loriere,et al.  Introductions and early spread of SARS-CoV-2 in France , 2020, bioRxiv.

[16]  Wenjun Ma,et al.  Genomic Epidemiology of SARS-CoV-2 in Guangdong Province, China , 2020, Cell.

[17]  M. Gismondo,et al.  Whole genome and phylogenetic analysis of two SARS-CoV-2 strains isolated in Italy in January and February 2020: additional clues on multiple introductions and further circulation in Europe , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[18]  Jia-Fu Jiang,et al.  Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins , 2020, Nature.

[19]  E. Holmes,et al.  The proximal origin of SARS-CoV-2 , 2020, Nature Medicine.

[20]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[21]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[22]  Kevin R. Thornton,et al.  Efficiently Summarizing Relationships in Large Samples: A General Duality Between Statistics of Genealogies and Genomes , 2019, Genetics.

[23]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[24]  Siavash Mirarab,et al.  TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees , 2018, BMC Genomics.

[25]  Benoit Morel,et al.  EPA-ng: Massively Parallel Evolutionary Placement of Genetic Sequences , 2018, bioRxiv.

[26]  Kevin R. Thornton,et al.  Efficient pedigree recording for fast population genetics simulation , 2018, bioRxiv.

[27]  Trevor Bedford,et al.  Nextstrain: real-time tracking of pathogen evolution , 2017, bioRxiv.

[28]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[29]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[30]  Yuelong Shu,et al.  GISAID: Global initiative on sharing all influenza data – from vision to reality , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[31]  Stephanie J. Spielman,et al.  Pyvolve: A Flexible Python Module for Simulating Sequences along Phylogenies , 2015, bioRxiv.

[32]  Minh Anh Nguyen,et al.  Ultrafast Approximation for Phylogenetic Bootstrap , 2013, Molecular biology and evolution.

[33]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[34]  Albert J. Vilella,et al.  Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm , 2012, Bioinform..

[35]  Krzysztof Giaro,et al.  TreeCmp: Comparison of Trees in Polynomial Time , 2012, Evolutionary Bioinformatics Online.

[36]  Remco R. Bouckaert,et al.  DensiTree: making sense of sets of phylogenetic trees , 2010, Bioinform..

[37]  Evgeny M. Zdobnov,et al.  The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell , 2010, Bioinform..

[38]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[39]  Tao Liu,et al.  TreeFam: 2008 Update , 2007, Nucleic Acids Res..

[40]  O. Gascuel,et al.  Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. , 2006, Systematic biology.

[41]  Steven Skiena,et al.  Lowest common ancestors in trees and directed acyclic graphs , 2005, J. Algorithms.

[42]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[43]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[44]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[45]  D. Sankoff Minimal Mutation Trees of Sequences , 1975 .