Example-Driven Manifold Priors for Image Deconvolution

Image restoration methods that exploit prior information about images to be estimated have been extensively studied, typically using the Bayesian framework. In this paper, we consider the role of prior knowledge of the object class in the form of a patch manifold to address the deconvolution problem. Specifically, we incorporate unlabeled image data of the object class, say natural images, in the form of a patch-manifold prior for the object class. The manifold prior is implicitly estimated from the given unlabeled data. We show how the patch-manifold prior effectively exploits the available sample class data for regularizing the deblurring problem. Furthermore, we derive a generalized cross-validation (GCV) function to automatically determine the regularization parameter at each iteration without explicitly knowing the noise variance. Extensive experiments show that this method performs better than many competitive image deconvolution methods.

[1]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[2]  Lin He,et al.  Blind deconvolution using TV regularization and Bregman iteration , 2005, Int. J. Imaging Syst. Technol..

[3]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, CVPR.

[4]  R. Mersereau,et al.  Iterative methods for image deblurring , 1990 .

[5]  Stéphane Mallat,et al.  Deconvolution by thresholding in mirror wavelet bases , 2003, IEEE Trans. Image Process..

[6]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[7]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[8]  D. Donoho Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .

[9]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[10]  Gabriel Peyré,et al.  Manifold models for signals and images , 2009, Comput. Vis. Image Underst..

[11]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[12]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[13]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[14]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[15]  Rama Chellappa,et al.  Object Dependent Manifold Priors for Image Deconvolution , 2010 .

[16]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Richard G. Baraniuk,et al.  ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems , 2004, IEEE Transactions on Signal Processing.

[18]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[19]  G. Easley,et al.  Sparse directional image representations using the discrete shearlet transform , 2008 .

[20]  Minh N. Do,et al.  The Nonsubsampled Contourlet Transform: Theory, Design, and Applications , 2006, IEEE Transactions on Image Processing.

[21]  Sundaresh Ram,et al.  Removing Camera Shake from a Single Photograph , 2009 .

[22]  Dennis M. Healy,et al.  Shearlet-Based Deconvolution , 2009, IEEE Transactions on Image Processing.

[23]  Jaakko Astola,et al.  A spatially adaptive nonparametric regression image deblurring , 2005, IEEE Transactions on Image Processing.

[24]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[25]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.

[26]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[27]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[28]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[29]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[30]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[31]  Ameet Talwalkar,et al.  Large-scale manifold learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[33]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[34]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[35]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[36]  Peyman Milanfar,et al.  Deblurring Using Regularized Locally Adaptive Kernel Regression , 2008, IEEE Transactions on Image Processing.

[37]  David J. Kriegman,et al.  What is the set of images of an object under all possible lighting conditions? , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[39]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[40]  Fionn Murtagh,et al.  Fast communication , 2002 .